Matches in SemOpenAlex for { <https://semopenalex.org/work/W2565505752> ?p ?o ?g. }
- W2565505752 endingPage "182" @default.
- W2565505752 startingPage "165" @default.
- W2565505752 abstract "A Paleoproterozoic leucogranite has been identified petrologically as highly fractionated granite near Huili in the Jiaobei Terrane of the North China Craton. This granite occurs as a 3 × 10 km pluton in the metamorphic Paleoproterozoic Jingshan Group and was dated at 1.86 Ga using zircon LA-ICP-MS U-Pb ages. The Huili leucogranite can be subdivided into three groups: groups I and II have normal leucogranite abundances with 2.22–2.57 wt.% Na2O, 6.10–6.92 wt.% K2O, and 71.68–73.07 wt.% SiO2 and group III has a remarkably high Na2O concentration of 6.45–7.23 wt.%, a low K2O content of 0.82–1.05 wt.%, and 74.21–74.79% wt.% SiO2. Moreover, group III leucogranite comprises slightly lower Th, U, and Sr contents and considerably lower K-feldspar compatible elements, such as Rb, Ba, Pb, and Cs than those of groups I & II. All of these features strongly indicate the K-feldspar fractionation during the magma evolution from groups I and II to group III, which is strongly supported by the Pb isotope analysis. Group III leucogranite has a notably high U/Pb ratio of 0.30 to 0.45 with a normal U content of 1.42 to 2.21 ppm and very low Pb content of 4 to 5 ppm, indicating a significant K-feldspar fractionation of the magma. Group III leucogranite has high radiogenic Pb isotopes (i.e., 206Pb/204Pb = 37.407–116.31), demonstrating that the rocks must have existed in a high U-Pb system for a notably long time. Fortunately, the whole rock Pb isotope values roughly define the Pb-Pb isochrons, not only when all three groups of samples are considered together but also when any individual group is considered. The ages are very close to the formation time of ~ 1.86 Ga indicating the high U/Pb system required by these Pb isotopes must have been initiated during the formation of the Huili leucogranite, which has perfectly confirmed the K-feldspar fractionation during the magma evolution. All samples have consistent εNd values (t = 1.86 Ga) of − 4.0 to − 6.2 with two-stage Nd model ages (TDM2) of 2.67 to 2.85 Ga. It is concluded that the 1.86 Ga Huili leucogranite is highly fractionated, derived from ancient crustal material extracted from the depleted mantle at 2.7–2.8 Ga, and experienced significant fractionation of K-feldspar in association with biotite and monazite fractionation during the magmatic evolution. Group III leucogranite is albite granite with albite phenocrysts, whereas groups I & II are K-feldspar granites with K-feldspar phenocrysts. It is here argued that the Huili albite granite (group III leucogranite) is derived from a highly differentiated residual melt separated from the K-rich magma represented by groups I and II leucogranite due to Kf fractionation during magma evolution." @default.
- W2565505752 created "2017-01-06" @default.
- W2565505752 creator A5002086524 @default.
- W2565505752 creator A5003092500 @default.
- W2565505752 creator A5005614740 @default.
- W2565505752 creator A5076353416 @default.
- W2565505752 date "2017-02-01" @default.
- W2565505752 modified "2023-10-03" @default.
- W2565505752 title "Petrogenesis of the Huili Paleoproterozoic leucogranite in the Jiaobei Terrane of the North China Craton: A highly fractionated albite granite forced by K-feldspar fractionation" @default.
- W2565505752 cites W1158726619 @default.
- W2565505752 cites W1520801330 @default.
- W2565505752 cites W1863083957 @default.
- W2565505752 cites W1963712677 @default.
- W2565505752 cites W1967346375 @default.
- W2565505752 cites W1967525372 @default.
- W2565505752 cites W1968300719 @default.
- W2565505752 cites W1969859799 @default.
- W2565505752 cites W1970568474 @default.
- W2565505752 cites W1970740923 @default.
- W2565505752 cites W1971685925 @default.
- W2565505752 cites W1972295324 @default.
- W2565505752 cites W1977650828 @default.
- W2565505752 cites W1979473511 @default.
- W2565505752 cites W1980851297 @default.
- W2565505752 cites W1985885839 @default.
- W2565505752 cites W1989392133 @default.
- W2565505752 cites W1990728952 @default.
- W2565505752 cites W1991218568 @default.
- W2565505752 cites W1997568954 @default.
- W2565505752 cites W2008507451 @default.
- W2565505752 cites W2008961654 @default.
- W2565505752 cites W2011613029 @default.
- W2565505752 cites W2011803843 @default.
- W2565505752 cites W2013031046 @default.
- W2565505752 cites W2018318075 @default.
- W2565505752 cites W2019034794 @default.
- W2565505752 cites W2019143131 @default.
- W2565505752 cites W2021508582 @default.
- W2565505752 cites W2021987309 @default.
- W2565505752 cites W2027615258 @default.
- W2565505752 cites W2028802548 @default.
- W2565505752 cites W2034961939 @default.
- W2565505752 cites W2037923466 @default.
- W2565505752 cites W2043003723 @default.
- W2565505752 cites W2047454205 @default.
- W2565505752 cites W2049523181 @default.
- W2565505752 cites W2059266152 @default.
- W2565505752 cites W2061359484 @default.
- W2565505752 cites W2064078798 @default.
- W2565505752 cites W2068038089 @default.
- W2565505752 cites W2068559132 @default.
- W2565505752 cites W2068650319 @default.
- W2565505752 cites W2072681703 @default.
- W2565505752 cites W2076373269 @default.
- W2565505752 cites W2077532807 @default.
- W2565505752 cites W2078105240 @default.
- W2565505752 cites W2080494759 @default.
- W2565505752 cites W2081020685 @default.
- W2565505752 cites W2082610919 @default.
- W2565505752 cites W2088672133 @default.
- W2565505752 cites W2090836067 @default.
- W2565505752 cites W2091193966 @default.
- W2565505752 cites W2092364918 @default.
- W2565505752 cites W2093299383 @default.
- W2565505752 cites W2093369526 @default.
- W2565505752 cites W2094194060 @default.
- W2565505752 cites W2098077004 @default.
- W2565505752 cites W2098235917 @default.
- W2565505752 cites W2108971421 @default.
- W2565505752 cites W2116346512 @default.
- W2565505752 cites W2133878331 @default.
- W2565505752 cites W2134849096 @default.
- W2565505752 cites W2135588124 @default.
- W2565505752 cites W2141085069 @default.
- W2565505752 cites W2141816124 @default.
- W2565505752 cites W2144081161 @default.
- W2565505752 cites W2152590634 @default.
- W2565505752 cites W2169852852 @default.
- W2565505752 cites W2194717861 @default.
- W2565505752 cites W2302158403 @default.
- W2565505752 cites W2326617477 @default.
- W2565505752 cites W2335047151 @default.
- W2565505752 cites W2995482781 @default.
- W2565505752 cites W3009188653 @default.
- W2565505752 cites W4249068219 @default.
- W2565505752 cites W4255137559 @default.
- W2565505752 cites W4255182371 @default.
- W2565505752 cites W837563393 @default.
- W2565505752 doi "https://doi.org/10.1016/j.chemgeo.2016.12.029" @default.
- W2565505752 hasPublicationYear "2017" @default.
- W2565505752 type Work @default.
- W2565505752 sameAs 2565505752 @default.
- W2565505752 citedByCount "38" @default.
- W2565505752 countsByYear W25655057522017 @default.
- W2565505752 countsByYear W25655057522018 @default.
- W2565505752 countsByYear W25655057522019 @default.
- W2565505752 countsByYear W25655057522020 @default.
- W2565505752 countsByYear W25655057522021 @default.