Matches in SemOpenAlex for { <https://semopenalex.org/work/W2565603695> ?p ?o ?g. }
- W2565603695 endingPage "46" @default.
- W2565603695 startingPage "1" @default.
- W2565603695 abstract "A fundamental problem in computational geometry is to compute an obstacle-avoiding Euclidean shortest path between two points in the plane. The case of this problem on polygonal obstacles is well studied. In this article, we consider the problem version on curved obstacles, which are commonly modeled as splinegons . A splinegon can be viewed as replacing each edge of a polygon by a convex curved edge (polygons are special splinegons), and the combinatorial complexity of each curved edge is assumed to be O (1). Given in the plane two points s and t and a set s of h pairwise disjoint splinegons with a total of n vertices, after a bounded degree decomposition of S is obtained, we compute a shortest s -to- t path avoiding the splinegons in O ( n + h log h + k ) time, where k is a parameter sensitive to the geometric structures of the input and is upper bounded by O ( h 2 ). The bounded degree decomposition of S , which is similar to the triangulation of the polygonal domains, can be computed in O ( n log n ) time or O ( n + h log 1 + ϵ h ) time for any ϵ > 0. In particular, when all splinegons are convex, the decomposition can be computed in O ( n + h log h ) time and k is linear to the number of common tangents in the free space (called “free common tangents”) among the splinegons. Our techniques also improve several previous results: (1) For the polygon case (i.e., when all splinegons are polygons), the shortest path problem was previously solved in O ( n log n ) time, or in O ( n + h 2 log n ) time. Thus, our algorithm improves the O ( n + h 2 log n ) time result, and is faster than the O ( n log n ) time solution for sufficiently small h , for example, h = o (√ n ,log n . (2) Our techniques produce an optimal output-sensitive algorithm for a basic visibility problem of computing all free common tangents among h pairwise disjoint convex splinegons with a total of n vertices. Our algorithm runs in O ( n + h log h + k ) time and O ( n ) working space, where k is the number of all free common tangents. Note that k = O ( h 2 ). Even for the special case where all splinegons are convex polygons , the previously best algorithm for this visibility problem takes O ( n + h 2 log n ) time. (3) We improve the previous work for computing the shortest path between two points among convex pseudodisks of O (1) complexity each. In addition, a by-product of our techniques is an optimal O ( n + h log h ) time and O ( n ) space algorithm for computing the Voronoi diagram of a set of h pairwise disjoint convex splinegons with a total of n vertices." @default.
- W2565603695 created "2017-01-06" @default.
- W2565603695 creator A5060901632 @default.
- W2565603695 creator A5087404367 @default.
- W2565603695 date "2015-04-13" @default.
- W2565603695 modified "2023-09-23" @default.
- W2565603695 title "Computing Shortest Paths among Curved Obstacles in the Plane" @default.
- W2565603695 cites W1482503584 @default.
- W2565603695 cites W1980453746 @default.
- W2565603695 cites W1983422667 @default.
- W2565603695 cites W1985010089 @default.
- W2565603695 cites W1986014106 @default.
- W2565603695 cites W1994987092 @default.
- W2565603695 cites W2003711654 @default.
- W2565603695 cites W2006448653 @default.
- W2565603695 cites W2011380591 @default.
- W2565603695 cites W2014320134 @default.
- W2565603695 cites W2016584965 @default.
- W2565603695 cites W2021380525 @default.
- W2565603695 cites W2022670034 @default.
- W2565603695 cites W2025376602 @default.
- W2565603695 cites W2029668981 @default.
- W2565603695 cites W2039204626 @default.
- W2565603695 cites W2040904149 @default.
- W2565603695 cites W2051831392 @default.
- W2565603695 cites W2058510050 @default.
- W2565603695 cites W2063244634 @default.
- W2565603695 cites W2070164574 @default.
- W2565603695 cites W2077163943 @default.
- W2565603695 cites W2085041675 @default.
- W2565603695 cites W2106413026 @default.
- W2565603695 cites W2126876121 @default.
- W2565603695 cites W2130647774 @default.
- W2565603695 cites W2132026455 @default.
- W2565603695 cites W2132339863 @default.
- W2565603695 cites W2136884464 @default.
- W2565603695 cites W2147097381 @default.
- W2565603695 cites W2167427782 @default.
- W2565603695 cites W2171580054 @default.
- W2565603695 cites W3005932889 @default.
- W2565603695 cites W4213074663 @default.
- W2565603695 cites W188591245 @default.
- W2565603695 doi "https://doi.org/10.1145/2660771" @default.
- W2565603695 hasPublicationYear "2015" @default.
- W2565603695 type Work @default.
- W2565603695 sameAs 2565603695 @default.
- W2565603695 citedByCount "14" @default.
- W2565603695 countsByYear W25656036952015 @default.
- W2565603695 countsByYear W25656036952017 @default.
- W2565603695 countsByYear W25656036952018 @default.
- W2565603695 countsByYear W25656036952019 @default.
- W2565603695 countsByYear W25656036952020 @default.
- W2565603695 countsByYear W25656036952021 @default.
- W2565603695 countsByYear W25656036952022 @default.
- W2565603695 countsByYear W25656036952023 @default.
- W2565603695 crossrefType "journal-article" @default.
- W2565603695 hasAuthorship W2565603695A5060901632 @default.
- W2565603695 hasAuthorship W2565603695A5087404367 @default.
- W2565603695 hasBestOaLocation W25656036952 @default.
- W2565603695 hasConcept C112680207 @default.
- W2565603695 hasConcept C114614502 @default.
- W2565603695 hasConcept C118615104 @default.
- W2565603695 hasConcept C121332964 @default.
- W2565603695 hasConcept C126042441 @default.
- W2565603695 hasConcept C132525143 @default.
- W2565603695 hasConcept C134306372 @default.
- W2565603695 hasConcept C190694206 @default.
- W2565603695 hasConcept C22590252 @default.
- W2565603695 hasConcept C24890656 @default.
- W2565603695 hasConcept C2524010 @default.
- W2565603695 hasConcept C2775997480 @default.
- W2565603695 hasConcept C33923547 @default.
- W2565603695 hasConcept C34388435 @default.
- W2565603695 hasConcept C41008148 @default.
- W2565603695 hasConcept C76155785 @default.
- W2565603695 hasConceptScore W2565603695C112680207 @default.
- W2565603695 hasConceptScore W2565603695C114614502 @default.
- W2565603695 hasConceptScore W2565603695C118615104 @default.
- W2565603695 hasConceptScore W2565603695C121332964 @default.
- W2565603695 hasConceptScore W2565603695C126042441 @default.
- W2565603695 hasConceptScore W2565603695C132525143 @default.
- W2565603695 hasConceptScore W2565603695C134306372 @default.
- W2565603695 hasConceptScore W2565603695C190694206 @default.
- W2565603695 hasConceptScore W2565603695C22590252 @default.
- W2565603695 hasConceptScore W2565603695C24890656 @default.
- W2565603695 hasConceptScore W2565603695C2524010 @default.
- W2565603695 hasConceptScore W2565603695C2775997480 @default.
- W2565603695 hasConceptScore W2565603695C33923547 @default.
- W2565603695 hasConceptScore W2565603695C34388435 @default.
- W2565603695 hasConceptScore W2565603695C41008148 @default.
- W2565603695 hasConceptScore W2565603695C76155785 @default.
- W2565603695 hasIssue "4" @default.
- W2565603695 hasLocation W25656036951 @default.
- W2565603695 hasLocation W25656036952 @default.
- W2565603695 hasLocation W25656036953 @default.
- W2565603695 hasOpenAccess W2565603695 @default.
- W2565603695 hasPrimaryLocation W25656036951 @default.
- W2565603695 hasRelatedWork W1516407058 @default.