Matches in SemOpenAlex for { <https://semopenalex.org/work/W2565637145> ?p ?o ?g. }
- W2565637145 endingPage "1770" @default.
- W2565637145 startingPage "1761" @default.
- W2565637145 abstract "In light of significant complexity of the byproduct gas system in steel industry (which limits an ability to establish its physics-based model), this paper proposes a data-based predictive optimization (DPO) method to carry out real-time adjusting for the gas system. Two stages of the method, namely, the prediction modeling and real-time optimization, are involved. At the prediction stage, the states of the optimized objectives, the consumption of the outsourcing natural gas and oil, the power generation, and the tank levels, are forecasted based on a proposed mixed Gaussian kernel-based prediction intervals (PIs) construction model. The Jacobian matrix of this model is represented by a kernel matrix through derivation, which greatly facilitates the subsequent calculation. At the second stage, a rolling optimization based on a mathematical programming technique involving continuous and integer decision-making variables is developed via the PIs. To demonstrate the performance of the DPO method, the practical data coming from the energy center of a steel plant are employed. The results show that the proposed DPO method can supply the human operators with effective solution for secure and economically justified optimization of the gas system. Note to Practitioners-Given that the byproduct gas system in steel industry can hardly be described by a physics or mechanism-based model, its operation is widely realized by the experience-based manual measure at present, which exhibits a very low automation level. Since a large number of real-time energy data have been accumulated by the existing SCADA system implemented in most of steel plants, a novel data-driven real-time predictive optimization method is proposed in this study. The proposed method aims at the short term energy optimization, thus the sample interval of the real-time data acquired from the SCADA system is set as 1 minute. The application system can provide the rolling optimized solution via real-time predicting the running circumstances of the gas system. Therefore, it is required for the plant in advance to implement the SCADA system for the energy data acquisition, and the sampling interval should be less than or equal to 1 minute. Furthermore, it is necessary for the sample data to complete the preliminary processing such as data imputation if needed since there are usually a large number of possible missing data points existed in the SCADA system of the production practice. Because such preliminary processing for the sample data belongs to a class of generic methods, this study avoids the redundant technical introduction." @default.
- W2565637145 created "2017-01-06" @default.
- W2565637145 creator A5003799782 @default.
- W2565637145 creator A5024970317 @default.
- W2565637145 creator A5039819154 @default.
- W2565637145 creator A5042870470 @default.
- W2565637145 creator A5046597133 @default.
- W2565637145 date "2017-10-01" @default.
- W2565637145 modified "2023-10-18" @default.
- W2565637145 title "Data-Based Predictive Optimization for Byproduct Gas System in Steel Industry" @default.
- W2565637145 cites W1560021816 @default.
- W2565637145 cites W1949568940 @default.
- W2565637145 cites W1973097430 @default.
- W2565637145 cites W1973650920 @default.
- W2565637145 cites W1983185042 @default.
- W2565637145 cites W1985579611 @default.
- W2565637145 cites W1993139783 @default.
- W2565637145 cites W1993261349 @default.
- W2565637145 cites W2004938416 @default.
- W2565637145 cites W2009102497 @default.
- W2565637145 cites W2011307992 @default.
- W2565637145 cites W2013872183 @default.
- W2565637145 cites W2022383956 @default.
- W2565637145 cites W2025966011 @default.
- W2565637145 cites W2031235756 @default.
- W2565637145 cites W2033410765 @default.
- W2565637145 cites W2035165454 @default.
- W2565637145 cites W2060611714 @default.
- W2565637145 cites W2061225002 @default.
- W2565637145 cites W2063885094 @default.
- W2565637145 cites W2067543652 @default.
- W2565637145 cites W2078437914 @default.
- W2565637145 cites W2079796462 @default.
- W2565637145 cites W2080603581 @default.
- W2565637145 cites W2086549730 @default.
- W2565637145 cites W2088538739 @default.
- W2565637145 cites W2095800297 @default.
- W2565637145 cites W2104462141 @default.
- W2565637145 cites W2107376597 @default.
- W2565637145 cites W2117063635 @default.
- W2565637145 cites W2120097553 @default.
- W2565637145 cites W2132477882 @default.
- W2565637145 cites W2133969552 @default.
- W2565637145 cites W2139212933 @default.
- W2565637145 cites W2153263933 @default.
- W2565637145 cites W2155816288 @default.
- W2565637145 cites W2160566248 @default.
- W2565637145 cites W2163173612 @default.
- W2565637145 cites W2171666055 @default.
- W2565637145 cites W254318414 @default.
- W2565637145 doi "https://doi.org/10.1109/tase.2016.2629505" @default.
- W2565637145 hasPublicationYear "2017" @default.
- W2565637145 type Work @default.
- W2565637145 sameAs 2565637145 @default.
- W2565637145 citedByCount "20" @default.
- W2565637145 countsByYear W25656371452018 @default.
- W2565637145 countsByYear W25656371452019 @default.
- W2565637145 countsByYear W25656371452020 @default.
- W2565637145 countsByYear W25656371452021 @default.
- W2565637145 countsByYear W25656371452022 @default.
- W2565637145 countsByYear W25656371452023 @default.
- W2565637145 crossrefType "journal-article" @default.
- W2565637145 hasAuthorship W2565637145A5003799782 @default.
- W2565637145 hasAuthorship W2565637145A5024970317 @default.
- W2565637145 hasAuthorship W2565637145A5039819154 @default.
- W2565637145 hasAuthorship W2565637145A5042870470 @default.
- W2565637145 hasAuthorship W2565637145A5046597133 @default.
- W2565637145 hasConcept C113863187 @default.
- W2565637145 hasConcept C114614502 @default.
- W2565637145 hasConcept C115901376 @default.
- W2565637145 hasConcept C119599485 @default.
- W2565637145 hasConcept C126255220 @default.
- W2565637145 hasConcept C127413603 @default.
- W2565637145 hasConcept C137836250 @default.
- W2565637145 hasConcept C200331156 @default.
- W2565637145 hasConcept C28826006 @default.
- W2565637145 hasConcept C33923547 @default.
- W2565637145 hasConcept C74193536 @default.
- W2565637145 hasConcept C78519656 @default.
- W2565637145 hasConceptScore W2565637145C113863187 @default.
- W2565637145 hasConceptScore W2565637145C114614502 @default.
- W2565637145 hasConceptScore W2565637145C115901376 @default.
- W2565637145 hasConceptScore W2565637145C119599485 @default.
- W2565637145 hasConceptScore W2565637145C126255220 @default.
- W2565637145 hasConceptScore W2565637145C127413603 @default.
- W2565637145 hasConceptScore W2565637145C137836250 @default.
- W2565637145 hasConceptScore W2565637145C200331156 @default.
- W2565637145 hasConceptScore W2565637145C28826006 @default.
- W2565637145 hasConceptScore W2565637145C33923547 @default.
- W2565637145 hasConceptScore W2565637145C74193536 @default.
- W2565637145 hasConceptScore W2565637145C78519656 @default.
- W2565637145 hasFunder F4320321001 @default.
- W2565637145 hasFunder F4320321543 @default.
- W2565637145 hasIssue "4" @default.
- W2565637145 hasLocation W25656371451 @default.
- W2565637145 hasOpenAccess W2565637145 @default.
- W2565637145 hasPrimaryLocation W25656371451 @default.
- W2565637145 hasRelatedWork W1983640558 @default.