Matches in SemOpenAlex for { <https://semopenalex.org/work/W2565706587> ?p ?o ?g. }
- W2565706587 endingPage "127" @default.
- W2565706587 startingPage "61" @default.
- W2565706587 abstract "Diophantine approximation is concerned with the quantitative study of the density of the rational numbers inside the real numbers. The Diophantine properties of a real number can be quantified through its approximation properties by rational (and more generally algebraic) numbers. For rational approximation, continued fractions provide an important tool in studying such properties. For higher dimensional problems and for algebraic approximation, different methods are needed. The metric theory of Diophantine approximation is concerned with the size of sets of numbers enjoying specified Diophantine properties. It is a general feature of the theory that most natural properties give rise to zero–one laws: the set of numbers enjoying the property in question is either null or full with respect to the Lebesgue measure. A more refined study of the null sets can be done using the notions of Hausdorff measure and dimension. Over the years, considerable work has gone into studying metric Diophantine approximation on subsets of $$mathbb {R}^n$$ . The initial focus was on curves, surfaces and manifolds, but in recent years much effort has also gone into the study of fractal subsets. Already in the setting of rational approximation of real numbers, many problems which seem simple enough remain open. For instance, it is not known whether the Cantor middle third set contains an algebraic, irrational number (it is conjectured not to do so). In these notes, starting from the classical setup, I will work towards the study of metric Diophantine approximation on fractal sets. Along the way, we will touch upon some major open problems in Diophantine approximation, such as the Littlewood conjecture and the Duffin–Schaeffer conjecture; and newer methods originating in ergodic theory and dynamical systems will also be discussed. The required elements from fractal geometry will be covered." @default.
- W2565706587 created "2017-01-06" @default.
- W2565706587 creator A5056420729 @default.
- W2565706587 date "2016-01-01" @default.
- W2565706587 modified "2023-09-30" @default.
- W2565706587 title "Metric Diophantine Approximation—From Continued Fractions to Fractals" @default.
- W2565706587 cites W1447601445 @default.
- W2565706587 cites W1535994948 @default.
- W2565706587 cites W2008250502 @default.
- W2565706587 cites W2013498350 @default.
- W2565706587 cites W2024314822 @default.
- W2565706587 cites W2037384923 @default.
- W2565706587 cites W2038109797 @default.
- W2565706587 cites W2039500741 @default.
- W2565706587 cites W2043744923 @default.
- W2565706587 cites W2054451537 @default.
- W2565706587 cites W2056577490 @default.
- W2565706587 cites W2057621739 @default.
- W2565706587 cites W2058162277 @default.
- W2565706587 cites W2072847300 @default.
- W2565706587 cites W2079599249 @default.
- W2565706587 cites W2082647537 @default.
- W2565706587 cites W2084215172 @default.
- W2565706587 cites W2089575867 @default.
- W2565706587 cites W2099465061 @default.
- W2565706587 cites W2100532477 @default.
- W2565706587 cites W2102029381 @default.
- W2565706587 cites W2130035452 @default.
- W2565706587 cites W2132501080 @default.
- W2565706587 cites W2136218417 @default.
- W2565706587 cites W2166696411 @default.
- W2565706587 cites W2312511319 @default.
- W2565706587 cites W2331228503 @default.
- W2565706587 cites W2962796214 @default.
- W2565706587 cites W4212965630 @default.
- W2565706587 cites W4238652859 @default.
- W2565706587 cites W4240810995 @default.
- W2565706587 cites W4246396013 @default.
- W2565706587 cites W4247766333 @default.
- W2565706587 cites W4256522009 @default.
- W2565706587 cites W4300020039 @default.
- W2565706587 cites W990060385 @default.
- W2565706587 doi "https://doi.org/10.1007/978-3-319-48817-2_2" @default.
- W2565706587 hasPublicationYear "2016" @default.
- W2565706587 type Work @default.
- W2565706587 sameAs 2565706587 @default.
- W2565706587 citedByCount "5" @default.
- W2565706587 countsByYear W25657065872018 @default.
- W2565706587 countsByYear W25657065872019 @default.
- W2565706587 countsByYear W25657065872020 @default.
- W2565706587 countsByYear W25657065872023 @default.
- W2565706587 crossrefType "book-chapter" @default.
- W2565706587 hasAuthorship W2565706587A5056420729 @default.
- W2565706587 hasConcept C102966492 @default.
- W2565706587 hasConcept C111472728 @default.
- W2565706587 hasConcept C118615104 @default.
- W2565706587 hasConcept C134306372 @default.
- W2565706587 hasConcept C138885662 @default.
- W2565706587 hasConcept C162324750 @default.
- W2565706587 hasConcept C169654258 @default.
- W2565706587 hasConcept C176217482 @default.
- W2565706587 hasConcept C194198291 @default.
- W2565706587 hasConcept C202444582 @default.
- W2565706587 hasConcept C206530611 @default.
- W2565706587 hasConcept C21547014 @default.
- W2565706587 hasConcept C2524010 @default.
- W2565706587 hasConcept C2780586882 @default.
- W2565706587 hasConcept C33923547 @default.
- W2565706587 hasConcept C40621787 @default.
- W2565706587 hasConcept C40636538 @default.
- W2565706587 hasConcept C46875033 @default.
- W2565706587 hasConcept C555856410 @default.
- W2565706587 hasConcept C9376300 @default.
- W2565706587 hasConcept C94020503 @default.
- W2565706587 hasConcept C94931360 @default.
- W2565706587 hasConceptScore W2565706587C102966492 @default.
- W2565706587 hasConceptScore W2565706587C111472728 @default.
- W2565706587 hasConceptScore W2565706587C118615104 @default.
- W2565706587 hasConceptScore W2565706587C134306372 @default.
- W2565706587 hasConceptScore W2565706587C138885662 @default.
- W2565706587 hasConceptScore W2565706587C162324750 @default.
- W2565706587 hasConceptScore W2565706587C169654258 @default.
- W2565706587 hasConceptScore W2565706587C176217482 @default.
- W2565706587 hasConceptScore W2565706587C194198291 @default.
- W2565706587 hasConceptScore W2565706587C202444582 @default.
- W2565706587 hasConceptScore W2565706587C206530611 @default.
- W2565706587 hasConceptScore W2565706587C21547014 @default.
- W2565706587 hasConceptScore W2565706587C2524010 @default.
- W2565706587 hasConceptScore W2565706587C2780586882 @default.
- W2565706587 hasConceptScore W2565706587C33923547 @default.
- W2565706587 hasConceptScore W2565706587C40621787 @default.
- W2565706587 hasConceptScore W2565706587C40636538 @default.
- W2565706587 hasConceptScore W2565706587C46875033 @default.
- W2565706587 hasConceptScore W2565706587C555856410 @default.
- W2565706587 hasConceptScore W2565706587C9376300 @default.
- W2565706587 hasConceptScore W2565706587C94020503 @default.
- W2565706587 hasConceptScore W2565706587C94931360 @default.
- W2565706587 hasLocation W25657065871 @default.