Matches in SemOpenAlex for { <https://semopenalex.org/work/W2566225477> ?p ?o ?g. }
- W2566225477 abstract "With the rapid growth over the past few decades, people are consuming more and more electrical energies. In order to solve the contradiction between supply and demand to minimize electricity cost, it is necessary and useful to predict the electricity demand. In this paper, we apply an improved neural network algorithm to forecast the electricity, and we test it on a collected electricity demand data set in Queensland to verify its performance. There are two contributions in this paper. Firstly, comparing with backpropagation (BP) neural network, the results show a better performance on this improved neural network. Secondly, the performance on various hidden layers shows that different dimension of hidden layer in this improved neural network has little impact on the Queensland's electricity demand forecasting." @default.
- W2566225477 created "2017-01-06" @default.
- W2566225477 creator A5002500632 @default.
- W2566225477 creator A5031318875 @default.
- W2566225477 creator A5048124575 @default.
- W2566225477 creator A5079200526 @default.
- W2566225477 creator A5086004140 @default.
- W2566225477 creator A5091015678 @default.
- W2566225477 date "2017-01-31" @default.
- W2566225477 modified "2023-10-16" @default.
- W2566225477 title "Neural network model with Monte Carlo algorithm for electricity demand forecasting in Queensland" @default.
- W2566225477 cites W1218120164 @default.
- W2566225477 cites W1601187287 @default.
- W2566225477 cites W1965425305 @default.
- W2566225477 cites W1966897524 @default.
- W2566225477 cites W1978429571 @default.
- W2566225477 cites W1979473671 @default.
- W2566225477 cites W1980477020 @default.
- W2566225477 cites W1982573436 @default.
- W2566225477 cites W1986528915 @default.
- W2566225477 cites W1988720990 @default.
- W2566225477 cites W1990785420 @default.
- W2566225477 cites W2000955338 @default.
- W2566225477 cites W2001842434 @default.
- W2566225477 cites W2008406084 @default.
- W2566225477 cites W2013744559 @default.
- W2566225477 cites W2019267730 @default.
- W2566225477 cites W2021162664 @default.
- W2566225477 cites W2035661269 @default.
- W2566225477 cites W2035737123 @default.
- W2566225477 cites W2037385586 @default.
- W2566225477 cites W2038904893 @default.
- W2566225477 cites W2043172021 @default.
- W2566225477 cites W2045122607 @default.
- W2566225477 cites W2047159855 @default.
- W2566225477 cites W2053888833 @default.
- W2566225477 cites W2059728786 @default.
- W2566225477 cites W2067847508 @default.
- W2566225477 cites W2070101089 @default.
- W2566225477 cites W2070166848 @default.
- W2566225477 cites W2070986256 @default.
- W2566225477 cites W2077965761 @default.
- W2566225477 cites W2080117042 @default.
- W2566225477 cites W2083051189 @default.
- W2566225477 cites W2094054185 @default.
- W2566225477 cites W2145732764 @default.
- W2566225477 cites W2426112559 @default.
- W2566225477 cites W2013604254 @default.
- W2566225477 doi "https://doi.org/10.1145/3014812.3014861" @default.
- W2566225477 hasPublicationYear "2017" @default.
- W2566225477 type Work @default.
- W2566225477 sameAs 2566225477 @default.
- W2566225477 citedByCount "17" @default.
- W2566225477 countsByYear W25662254772017 @default.
- W2566225477 countsByYear W25662254772018 @default.
- W2566225477 countsByYear W25662254772019 @default.
- W2566225477 countsByYear W25662254772020 @default.
- W2566225477 countsByYear W25662254772021 @default.
- W2566225477 crossrefType "proceedings-article" @default.
- W2566225477 hasAuthorship W2566225477A5002500632 @default.
- W2566225477 hasAuthorship W2566225477A5031318875 @default.
- W2566225477 hasAuthorship W2566225477A5048124575 @default.
- W2566225477 hasAuthorship W2566225477A5079200526 @default.
- W2566225477 hasAuthorship W2566225477A5086004140 @default.
- W2566225477 hasAuthorship W2566225477A5091015678 @default.
- W2566225477 hasConcept C105795698 @default.
- W2566225477 hasConcept C119599485 @default.
- W2566225477 hasConcept C119857082 @default.
- W2566225477 hasConcept C120330832 @default.
- W2566225477 hasConcept C127413603 @default.
- W2566225477 hasConcept C146733006 @default.
- W2566225477 hasConcept C154945302 @default.
- W2566225477 hasConcept C155032097 @default.
- W2566225477 hasConcept C162324750 @default.
- W2566225477 hasConcept C165801399 @default.
- W2566225477 hasConcept C175444787 @default.
- W2566225477 hasConcept C177264268 @default.
- W2566225477 hasConcept C184773241 @default.
- W2566225477 hasConcept C193809577 @default.
- W2566225477 hasConcept C19499675 @default.
- W2566225477 hasConcept C199360897 @default.
- W2566225477 hasConcept C202444582 @default.
- W2566225477 hasConcept C206658404 @default.
- W2566225477 hasConcept C2781104810 @default.
- W2566225477 hasConcept C33676613 @default.
- W2566225477 hasConcept C33923547 @default.
- W2566225477 hasConcept C41008148 @default.
- W2566225477 hasConcept C42475967 @default.
- W2566225477 hasConcept C50644808 @default.
- W2566225477 hasConceptScore W2566225477C105795698 @default.
- W2566225477 hasConceptScore W2566225477C119599485 @default.
- W2566225477 hasConceptScore W2566225477C119857082 @default.
- W2566225477 hasConceptScore W2566225477C120330832 @default.
- W2566225477 hasConceptScore W2566225477C127413603 @default.
- W2566225477 hasConceptScore W2566225477C146733006 @default.
- W2566225477 hasConceptScore W2566225477C154945302 @default.
- W2566225477 hasConceptScore W2566225477C155032097 @default.
- W2566225477 hasConceptScore W2566225477C162324750 @default.
- W2566225477 hasConceptScore W2566225477C165801399 @default.
- W2566225477 hasConceptScore W2566225477C175444787 @default.