Matches in SemOpenAlex for { <https://semopenalex.org/work/W2566468052> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2566468052 abstract "Modern information systems are changing the idea of “data processing” to the idea of “conceptprocessing”, meaning that instead of processing words, such systems process semantic conceptswhich carry meaning and share contexts with other concepts. Ontology is commonly used as astructure that captures the knowledge about a certain area via providing concepts and relationsbetween them. Traditionally, concept hierarchies have been built manually by knowledge engineers or domainexperts. However, the manual construction of a concept hierarchy suffers from several limitationssuch as its coverage and the enormous costs of extension and maintenance. Furthermore, keepingup with a hand-crafted concept hierarchy along with the evolution of domain knowledge is anoverwhelming task, being necessary to build concept hierarchies automatically. The (semi-)automatic support in ontology development is usually referred to as ontology learning.The ontology learning from texts is usually divided in steps, going from concepts identification,passing through hierarchy and non-hierarchy relations detection and, seldom, axiom extraction. Itis reasonable to say that among these steps the current frontier is in the establishment of concepthierarchies, since this is the backbone of ontologies and, therefore, a good concept hierarchy isalready a valuable resource for many ontology applications. A concept hierarchy is represented with a tree-structured form with specialization/generalizationrelations between concepts, in which lower-level concepts are more specific while higher-level aremore general. The automatic construction of concept hierarchies from texts is a complex task andsince the 1980 decade a large number of works have been proposing approaches to better extractrelations between concepts. These different proposals have never been contrasted against each otheron the same set of data and across different languages. Such comparison is important to see whetherthey are complementary or incremental, also we can see whether they present different tendenciestowards recall and precision, i.e., some can be very precise but with very low recall and others canachieve better recall but low precision. Another aspect concerns to the variation of results for different languages. This thesis evaluatesthese different methods on the basis of hierarchy metrics such as density and depth, and evaluationmetrics such as Recall and Precision. The evaluation is performed over the same corpora, whichconsist of English and Portuguese parallel and comparable texts. Both automatic and manualevaluations are presented. The output of seven methods are evaluated automatically and the outputof four methods are evaluated manually. Results shed light over the comprehensive set of methodsthat are the state of the art according to the literature in the area." @default.
- W2566468052 created "2017-01-06" @default.
- W2566468052 creator A5066324951 @default.
- W2566468052 date "2015-09-28" @default.
- W2566468052 modified "2023-09-26" @default.
- W2566468052 title "Evaluation of methods for taxonomic relation extraction from text" @default.
- W2566468052 hasPublicationYear "2015" @default.
- W2566468052 type Work @default.
- W2566468052 sameAs 2566468052 @default.
- W2566468052 citedByCount "2" @default.
- W2566468052 countsByYear W25664680522016 @default.
- W2566468052 countsByYear W25664680522017 @default.
- W2566468052 crossrefType "dissertation" @default.
- W2566468052 hasAuthorship W2566468052A5066324951 @default.
- W2566468052 hasConcept C111472728 @default.
- W2566468052 hasConcept C124101348 @default.
- W2566468052 hasConcept C137003198 @default.
- W2566468052 hasConcept C138885662 @default.
- W2566468052 hasConcept C154945302 @default.
- W2566468052 hasConcept C162324750 @default.
- W2566468052 hasConcept C204321447 @default.
- W2566468052 hasConcept C23123220 @default.
- W2566468052 hasConcept C2522767166 @default.
- W2566468052 hasConcept C25343380 @default.
- W2566468052 hasConcept C25810664 @default.
- W2566468052 hasConcept C2777002027 @default.
- W2566468052 hasConcept C31170391 @default.
- W2566468052 hasConcept C34447519 @default.
- W2566468052 hasConcept C41008148 @default.
- W2566468052 hasConcept C50971890 @default.
- W2566468052 hasConcept C90734943 @default.
- W2566468052 hasConceptScore W2566468052C111472728 @default.
- W2566468052 hasConceptScore W2566468052C124101348 @default.
- W2566468052 hasConceptScore W2566468052C137003198 @default.
- W2566468052 hasConceptScore W2566468052C138885662 @default.
- W2566468052 hasConceptScore W2566468052C154945302 @default.
- W2566468052 hasConceptScore W2566468052C162324750 @default.
- W2566468052 hasConceptScore W2566468052C204321447 @default.
- W2566468052 hasConceptScore W2566468052C23123220 @default.
- W2566468052 hasConceptScore W2566468052C2522767166 @default.
- W2566468052 hasConceptScore W2566468052C25343380 @default.
- W2566468052 hasConceptScore W2566468052C25810664 @default.
- W2566468052 hasConceptScore W2566468052C2777002027 @default.
- W2566468052 hasConceptScore W2566468052C31170391 @default.
- W2566468052 hasConceptScore W2566468052C34447519 @default.
- W2566468052 hasConceptScore W2566468052C41008148 @default.
- W2566468052 hasConceptScore W2566468052C50971890 @default.
- W2566468052 hasConceptScore W2566468052C90734943 @default.
- W2566468052 hasLocation W25664680521 @default.
- W2566468052 hasOpenAccess W2566468052 @default.
- W2566468052 hasPrimaryLocation W25664680521 @default.
- W2566468052 hasRelatedWork W1563275488 @default.
- W2566468052 hasRelatedWork W1585692976 @default.
- W2566468052 hasRelatedWork W1738006965 @default.
- W2566468052 hasRelatedWork W1816181311 @default.
- W2566468052 hasRelatedWork W1886172393 @default.
- W2566468052 hasRelatedWork W1969203620 @default.
- W2566468052 hasRelatedWork W201537654 @default.
- W2566468052 hasRelatedWork W2073908544 @default.
- W2566468052 hasRelatedWork W2250814652 @default.
- W2566468052 hasRelatedWork W2250946481 @default.
- W2566468052 hasRelatedWork W2253068693 @default.
- W2566468052 hasRelatedWork W2892384654 @default.
- W2566468052 hasRelatedWork W2949301067 @default.
- W2566468052 hasRelatedWork W2991379962 @default.
- W2566468052 hasRelatedWork W3123544595 @default.
- W2566468052 hasRelatedWork W3155960641 @default.
- W2566468052 hasRelatedWork W3195449034 @default.
- W2566468052 hasRelatedWork W833228676 @default.
- W2566468052 hasRelatedWork W1942438902 @default.
- W2566468052 hasRelatedWork W3088330127 @default.
- W2566468052 isParatext "false" @default.
- W2566468052 isRetracted "false" @default.
- W2566468052 magId "2566468052" @default.
- W2566468052 workType "dissertation" @default.