Matches in SemOpenAlex for { <https://semopenalex.org/work/W2566508671> ?p ?o ?g. }
- W2566508671 endingPage "e3509" @default.
- W2566508671 startingPage "e3509" @default.
- W2566508671 abstract "There are many steps in analyzing transcriptome data, from the acquisition of raw data to the selection of a subset of representative genes that explain a scientific hypothesis. The data produced can be represented as networks of interactions among genes and these may additionally be integrated with other biological databases, such as Protein-Protein Interactions, transcription factors and gene annotation. However, the results of these analyses remain fragmented, imposing difficulties, either for posterior inspection of results, or for meta-analysis by the incorporation of new related data. Integrating databases and tools into scientific workflows, orchestrating their execution, and managing the resulting data and its respective metadata are challenging tasks. Additionally, a great amount of effort is equally required to run in-silico experiments to structure and compose the information as needed for analysis. Different programs may need to be applied and different files are produced during the experiment cycle. In this context, the availability of a platform supporting experiment execution is paramount. We present GeNNet, an integrated transcriptome analysis platform that unifies scientific workflows with graph databases for selecting relevant genes according to the evaluated biological systems. It includes GeNNet-Wf, a scientific workflow that pre-loads biological data, pre-processes raw microarray data and conducts a series of analyses including normalization, differential expression inference, clusterization and gene set enrichment analysis. A user-friendly web interface, GeNNet-Web, allows for setting parameters, executing, and visualizing the results of GeNNet-Wf executions. To demonstrate the features of GeNNet, we performed case studies with data retrieved from GEO, particularly using a single-factor experiment in different analysis scenarios. As a result, we obtained differentially expressed genes for which biological functions were analyzed. The results are integrated into GeNNet-DB, a database about genes, clusters, experiments and their properties and relationships. The resulting graph database is explored with queries that demonstrate the expressiveness of this data model for reasoning about gene interaction networks. GeNNet is the first platform to integrate the analytical process of transcriptome data with graph databases. It provides a comprehensive set of tools that would otherwise be challenging for non-expert users to install and use. Developers can add new functionality to components of GeNNet. The derived data allows for testing previous hypotheses about an experiment and exploring new ones through the interactive graph database environment. It enables the analysis of different data on humans, rhesus, mice and rat coming from Affymetrix platforms. GeNNet is available as an open source platform at https://github.com/raquele/GeNNet and can be retrieved as a software container with the command docker pull quelopes/gennet." @default.
- W2566508671 created "2017-01-06" @default.
- W2566508671 creator A5001224623 @default.
- W2566508671 creator A5040979175 @default.
- W2566508671 creator A5050024272 @default.
- W2566508671 creator A5091408031 @default.
- W2566508671 date "2017-07-05" @default.
- W2566508671 modified "2023-10-16" @default.
- W2566508671 title "GeNNet: an integrated platform for unifying scientific workflows and graph databases for transcriptome data analysis" @default.
- W2566508671 cites W1509844421 @default.
- W2566508671 cites W1574680346 @default.
- W2566508671 cites W1921615383 @default.
- W2566508671 cites W1934094702 @default.
- W2566508671 cites W1964733653 @default.
- W2566508671 cites W1966327575 @default.
- W2566508671 cites W1966764836 @default.
- W2566508671 cites W1973451694 @default.
- W2566508671 cites W1974752004 @default.
- W2566508671 cites W1981033531 @default.
- W2566508671 cites W1989921625 @default.
- W2566508671 cites W1993046026 @default.
- W2566508671 cites W1995213405 @default.
- W2566508671 cites W2013318867 @default.
- W2566508671 cites W2018851752 @default.
- W2566508671 cites W2036318837 @default.
- W2566508671 cites W2038733937 @default.
- W2566508671 cites W2050930814 @default.
- W2566508671 cites W2052938577 @default.
- W2566508671 cites W2055214702 @default.
- W2566508671 cites W2057062444 @default.
- W2566508671 cites W2057922644 @default.
- W2566508671 cites W2060705109 @default.
- W2566508671 cites W2064641822 @default.
- W2566508671 cites W2065933154 @default.
- W2566508671 cites W2066003039 @default.
- W2566508671 cites W2075406901 @default.
- W2566508671 cites W2077579791 @default.
- W2566508671 cites W2080071958 @default.
- W2566508671 cites W2081098333 @default.
- W2566508671 cites W2094397891 @default.
- W2566508671 cites W2098864059 @default.
- W2566508671 cites W2103017472 @default.
- W2566508671 cites W2105924489 @default.
- W2566508671 cites W2109363337 @default.
- W2566508671 cites W2110768797 @default.
- W2566508671 cites W2116634113 @default.
- W2566508671 cites W2118258530 @default.
- W2566508671 cites W2123604001 @default.
- W2566508671 cites W2125910575 @default.
- W2566508671 cites W2131966673 @default.
- W2566508671 cites W2133111499 @default.
- W2566508671 cites W2135253885 @default.
- W2566508671 cites W2138255346 @default.
- W2566508671 cites W2140445011 @default.
- W2566508671 cites W2146728635 @default.
- W2566508671 cites W2146902212 @default.
- W2566508671 cites W2147246240 @default.
- W2566508671 cites W2152980152 @default.
- W2566508671 cites W2153422316 @default.
- W2566508671 cites W2153921000 @default.
- W2566508671 cites W2154513453 @default.
- W2566508671 cites W2155142785 @default.
- W2566508671 cites W2155833028 @default.
- W2566508671 cites W2158419964 @default.
- W2566508671 cites W2161645441 @default.
- W2566508671 cites W2168103533 @default.
- W2566508671 cites W2170989872 @default.
- W2566508671 cites W2185072450 @default.
- W2566508671 cites W2188324549 @default.
- W2566508671 cites W2236822143 @default.
- W2566508671 cites W2300136894 @default.
- W2566508671 cites W2303883954 @default.
- W2566508671 cites W2314821163 @default.
- W2566508671 cites W2437769451 @default.
- W2566508671 cites W2472742059 @default.
- W2566508671 cites W2496792076 @default.
- W2566508671 cites W2521565383 @default.
- W2566508671 cites W2550632143 @default.
- W2566508671 cites W2570618306 @default.
- W2566508671 cites W269919247 @default.
- W2566508671 cites W2949612930 @default.
- W2566508671 cites W343233802 @default.
- W2566508671 cites W4252133425 @default.
- W2566508671 doi "https://doi.org/10.7717/peerj.3509" @default.
- W2566508671 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5501156" @default.
- W2566508671 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28695067" @default.
- W2566508671 hasPublicationYear "2017" @default.
- W2566508671 type Work @default.
- W2566508671 sameAs 2566508671 @default.
- W2566508671 citedByCount "9" @default.
- W2566508671 countsByYear W25665086712018 @default.
- W2566508671 countsByYear W25665086712019 @default.
- W2566508671 countsByYear W25665086712020 @default.
- W2566508671 countsByYear W25665086712022 @default.
- W2566508671 crossrefType "journal-article" @default.
- W2566508671 hasAuthorship W2566508671A5001224623 @default.
- W2566508671 hasAuthorship W2566508671A5040979175 @default.
- W2566508671 hasAuthorship W2566508671A5050024272 @default.