Matches in SemOpenAlex for { <https://semopenalex.org/work/W2566526665> ?p ?o ?g. }
- W2566526665 endingPage "94" @default.
- W2566526665 startingPage "77" @default.
- W2566526665 abstract "Finite mixture regression models have been widely used for modelling mixed regression relationships arising from a clustered and thus heterogenous population. The classical normal mixture model, despite its simplicity and wide applicability, may fail in the presence of severe outliers. Using a sparse, case-specific, and scale-dependent mean-shift mixture model parameterization, we propose a robust mixture regression approach for simultaneously conducting outlier detection and robust parameter estimation. A penalized likelihood approach is adopted to induce sparsity among the mean-shift parameters so that the outliers are distinguished from the remainder of the data, and a generalized Expectation-Maximization (EM) algorithm is developed to perform stable and efficient computation. The proposed approach is shown to have strong connections with other robust methods including the trimmed likelihood method and M-estimation approaches. In contrast to several existing methods, the proposed methods show outstanding performance in our simulation studies." @default.
- W2566526665 created "2017-01-06" @default.
- W2566526665 creator A5006647324 @default.
- W2566526665 creator A5025749190 @default.
- W2566526665 creator A5078988597 @default.
- W2566526665 date "2016-12-29" @default.
- W2566526665 modified "2023-10-09" @default.
- W2566526665 title "A new method for robust mixture regression" @default.
- W2566526665 cites W1545074870 @default.
- W2566526665 cites W1581352608 @default.
- W2566526665 cites W1965125844 @default.
- W2566526665 cites W1966322875 @default.
- W2566526665 cites W1969515697 @default.
- W2566526665 cites W1975694431 @default.
- W2566526665 cites W1980503918 @default.
- W2566526665 cites W1994241229 @default.
- W2566526665 cites W1994296756 @default.
- W2566526665 cites W2005654075 @default.
- W2566526665 cites W2009462809 @default.
- W2566526665 cites W2019486793 @default.
- W2566526665 cites W2020647518 @default.
- W2566526665 cites W2020925091 @default.
- W2566526665 cites W2022989251 @default.
- W2566526665 cites W2025691140 @default.
- W2566526665 cites W2026538377 @default.
- W2566526665 cites W2027447060 @default.
- W2566526665 cites W2042613327 @default.
- W2566526665 cites W2048298626 @default.
- W2566526665 cites W2049419088 @default.
- W2566526665 cites W2065432682 @default.
- W2566526665 cites W2069120451 @default.
- W2566526665 cites W2072195653 @default.
- W2566526665 cites W2074682976 @default.
- W2566526665 cites W2087101057 @default.
- W2566526665 cites W2090268867 @default.
- W2566526665 cites W2110656936 @default.
- W2566526665 cites W2112905646 @default.
- W2566526665 cites W2117575248 @default.
- W2566526665 cites W2134761594 @default.
- W2566526665 cites W2137354923 @default.
- W2566526665 cites W2150227555 @default.
- W2566526665 cites W2158940042 @default.
- W2566526665 cites W2488678869 @default.
- W2566526665 cites W3099014882 @default.
- W2566526665 cites W3099470970 @default.
- W2566526665 cites W3100971749 @default.
- W2566526665 cites W4233704721 @default.
- W2566526665 cites W4241635929 @default.
- W2566526665 doi "https://doi.org/10.1002/cjs.11310" @default.
- W2566526665 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5450514" @default.
- W2566526665 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28579672" @default.
- W2566526665 hasPublicationYear "2016" @default.
- W2566526665 type Work @default.
- W2566526665 sameAs 2566526665 @default.
- W2566526665 citedByCount "11" @default.
- W2566526665 countsByYear W25665266652018 @default.
- W2566526665 countsByYear W25665266652019 @default.
- W2566526665 countsByYear W25665266652020 @default.
- W2566526665 countsByYear W25665266652021 @default.
- W2566526665 countsByYear W25665266652022 @default.
- W2566526665 countsByYear W25665266652023 @default.
- W2566526665 crossrefType "journal-article" @default.
- W2566526665 hasAuthorship W2566526665A5006647324 @default.
- W2566526665 hasAuthorship W2566526665A5025749190 @default.
- W2566526665 hasAuthorship W2566526665A5078988597 @default.
- W2566526665 hasBestOaLocation W25665266652 @default.
- W2566526665 hasConcept C105795698 @default.
- W2566526665 hasConcept C11413529 @default.
- W2566526665 hasConcept C152877465 @default.
- W2566526665 hasConcept C154945302 @default.
- W2566526665 hasConcept C182081679 @default.
- W2566526665 hasConcept C2776502983 @default.
- W2566526665 hasConcept C33923547 @default.
- W2566526665 hasConcept C41008148 @default.
- W2566526665 hasConcept C45374587 @default.
- W2566526665 hasConcept C49781872 @default.
- W2566526665 hasConcept C61224824 @default.
- W2566526665 hasConcept C67226441 @default.
- W2566526665 hasConcept C70259352 @default.
- W2566526665 hasConcept C79337645 @default.
- W2566526665 hasConcept C83546350 @default.
- W2566526665 hasConceptScore W2566526665C105795698 @default.
- W2566526665 hasConceptScore W2566526665C11413529 @default.
- W2566526665 hasConceptScore W2566526665C152877465 @default.
- W2566526665 hasConceptScore W2566526665C154945302 @default.
- W2566526665 hasConceptScore W2566526665C182081679 @default.
- W2566526665 hasConceptScore W2566526665C2776502983 @default.
- W2566526665 hasConceptScore W2566526665C33923547 @default.
- W2566526665 hasConceptScore W2566526665C41008148 @default.
- W2566526665 hasConceptScore W2566526665C45374587 @default.
- W2566526665 hasConceptScore W2566526665C49781872 @default.
- W2566526665 hasConceptScore W2566526665C61224824 @default.
- W2566526665 hasConceptScore W2566526665C67226441 @default.
- W2566526665 hasConceptScore W2566526665C70259352 @default.
- W2566526665 hasConceptScore W2566526665C79337645 @default.
- W2566526665 hasConceptScore W2566526665C83546350 @default.
- W2566526665 hasIssue "1" @default.
- W2566526665 hasLocation W25665266651 @default.