Matches in SemOpenAlex for { <https://semopenalex.org/work/W2566771666> ?p ?o ?g. }
- W2566771666 endingPage "1792" @default.
- W2566771666 startingPage "1776" @default.
- W2566771666 abstract "Many spectral unmixing approaches ranging from geometry, algebra to statistics have been proposed, in which nonnegative matrix factorization (NMF)-based ones form an important family. The original NMF-based unmixing algorithm loses the spectral and spatial information between mixed pixels when stacking the spectral responses of the pixels into an observed matrix. Therefore, various constrained NMF methods are developed to impose spectral structure, spatial structure, and spectral-spatial joint structure into NMF to enforce the estimated endmembers and abundances preserve these structures. Compared with matrix format, the third-order tensor is more natural to represent a hyperspectral data cube as a whole, by which the intrinsic structure of hyperspectral imagery can be losslessly retained. Extended from NMF-based methods, a matrix-vector nonnegative tensor factorization (NTF) model is proposed in this paper for spectral unmixing. Different from widely used tensor factorization models, such as canonical polyadic decomposition CPD) and Tucker decomposition, the proposed method is derived from block term decomposition, which is a combination of CPD and Tucker decomposition. This leads to a more flexible frame to model various application-dependent problems. The matrix-vector NTF decomposes a third-order tensor into the sum of several component tensors, with each component tensor being the outer product of a vector (endmember) and a matrix (corresponding abundances). From a formal perspective, this tensor decomposition is consistent with linear spectral mixture model. From an informative perspective, the structures within spatial domain, within spectral domain, and cross spectral-spatial domain are retreated interdependently. Experiments demonstrate that the proposed method has outperformed several state-of-the-art NMF-based unmixing methods." @default.
- W2566771666 created "2017-01-06" @default.
- W2566771666 creator A5033291716 @default.
- W2566771666 creator A5038865738 @default.
- W2566771666 creator A5059857918 @default.
- W2566771666 creator A5085140523 @default.
- W2566771666 creator A5089103033 @default.
- W2566771666 date "2017-03-01" @default.
- W2566771666 modified "2023-10-16" @default.
- W2566771666 title "Matrix-Vector Nonnegative Tensor Factorization for Blind Unmixing of Hyperspectral Imagery" @default.
- W2566771666 cites W1525270046 @default.
- W2566771666 cites W1631938343 @default.
- W2566771666 cites W1957094454 @default.
- W2566771666 cites W1969352102 @default.
- W2566771666 cites W1977355761 @default.
- W2566771666 cites W1980763639 @default.
- W2566771666 cites W1989881099 @default.
- W2566771666 cites W2000045479 @default.
- W2566771666 cites W2005106632 @default.
- W2566771666 cites W2007449884 @default.
- W2566771666 cites W2024165284 @default.
- W2566771666 cites W2032944446 @default.
- W2566771666 cites W2050760097 @default.
- W2566771666 cites W2055077910 @default.
- W2566771666 cites W2063069198 @default.
- W2566771666 cites W2063790512 @default.
- W2566771666 cites W2065548527 @default.
- W2566771666 cites W2067707954 @default.
- W2566771666 cites W2095343758 @default.
- W2566771666 cites W2096296424 @default.
- W2566771666 cites W2101837437 @default.
- W2566771666 cites W2102219056 @default.
- W2566771666 cites W2106771705 @default.
- W2566771666 cites W2107222994 @default.
- W2566771666 cites W2114486983 @default.
- W2566771666 cites W2116776498 @default.
- W2566771666 cites W2119412403 @default.
- W2566771666 cites W2121703988 @default.
- W2566771666 cites W2125298866 @default.
- W2566771666 cites W2127062304 @default.
- W2566771666 cites W2128990403 @default.
- W2566771666 cites W2137410567 @default.
- W2566771666 cites W2144492104 @default.
- W2566771666 cites W2157321686 @default.
- W2566771666 cites W2160941078 @default.
- W2566771666 cites W2163318306 @default.
- W2566771666 cites W2163886442 @default.
- W2566771666 cites W2169466597 @default.
- W2566771666 cites W2170407643 @default.
- W2566771666 cites W2174086746 @default.
- W2566771666 cites W2237974960 @default.
- W2566771666 cites W2292987679 @default.
- W2566771666 cites W2318512420 @default.
- W2566771666 cites W2324784787 @default.
- W2566771666 cites W2344373810 @default.
- W2566771666 cites W2490201121 @default.
- W2566771666 cites W3099152244 @default.
- W2566771666 cites W884417352 @default.
- W2566771666 doi "https://doi.org/10.1109/tgrs.2016.2633279" @default.
- W2566771666 hasPublicationYear "2017" @default.
- W2566771666 type Work @default.
- W2566771666 sameAs 2566771666 @default.
- W2566771666 citedByCount "138" @default.
- W2566771666 countsByYear W25667716662017 @default.
- W2566771666 countsByYear W25667716662018 @default.
- W2566771666 countsByYear W25667716662019 @default.
- W2566771666 countsByYear W25667716662020 @default.
- W2566771666 countsByYear W25667716662021 @default.
- W2566771666 countsByYear W25667716662022 @default.
- W2566771666 countsByYear W25667716662023 @default.
- W2566771666 crossrefType "journal-article" @default.
- W2566771666 hasAuthorship W2566771666A5033291716 @default.
- W2566771666 hasAuthorship W2566771666A5038865738 @default.
- W2566771666 hasAuthorship W2566771666A5059857918 @default.
- W2566771666 hasAuthorship W2566771666A5085140523 @default.
- W2566771666 hasAuthorship W2566771666A5089103033 @default.
- W2566771666 hasBestOaLocation W25667716662 @default.
- W2566771666 hasConcept C106487976 @default.
- W2566771666 hasConcept C11413529 @default.
- W2566771666 hasConcept C121332964 @default.
- W2566771666 hasConcept C152671427 @default.
- W2566771666 hasConcept C153180895 @default.
- W2566771666 hasConcept C154945302 @default.
- W2566771666 hasConcept C155281189 @default.
- W2566771666 hasConcept C158693339 @default.
- W2566771666 hasConcept C159078339 @default.
- W2566771666 hasConcept C159985019 @default.
- W2566771666 hasConcept C192562407 @default.
- W2566771666 hasConcept C202444582 @default.
- W2566771666 hasConcept C2524010 @default.
- W2566771666 hasConcept C27438332 @default.
- W2566771666 hasConcept C2778740170 @default.
- W2566771666 hasConcept C2986737658 @default.
- W2566771666 hasConcept C33923547 @default.
- W2566771666 hasConcept C41008148 @default.
- W2566771666 hasConcept C42355184 @default.
- W2566771666 hasConcept C42704193 @default.
- W2566771666 hasConcept C58237817 @default.