Matches in SemOpenAlex for { <https://semopenalex.org/work/W2566849112> ?p ?o ?g. }
- W2566849112 endingPage "401" @default.
- W2566849112 startingPage "392" @default.
- W2566849112 abstract "Advances in brain-computer interface (BCI) technology have facilitated the detection of Motor Imagery (MI) from electroencephalography (EEG). First, we present three strategies of using BCI to detect MI from EEG: operant conditioning that employed a fixed model, machine learning that employed a subject-specific model computed from calibration, and adaptive strategy that continuously compute the subject-specific model. Second, we review prevailing works that employed the operant conditioning and machine learning strategies. Third, we present our past work on six stroke patients who underwent a BCI rehabilitation clinical trial with averaged accuracies of 79.8% during calibration and 69.5% across 18 online feedback sessions. Finally, we perform an offline study in this paper on our work employing the adaptive strategy. The results yielded significant improvements of 12% (p < 0.001) and 9% (p < 0.001) using all the data and using limited preceding data respectively in the feedback accuracies. The results showed an increase in the amount of training data yielded improvements. Nevertheless, results of using limited preceding data showed a larger part of the improvement was due to the adaptive strategy and changing subject-specific models did not deteriorate the accuracies. Hence the adaptive strategy is effective in addressing the non-stationarity between calibration and feedback sessions." @default.
- W2566849112 created "2017-01-06" @default.
- W2566849112 creator A5031778999 @default.
- W2566849112 creator A5066840869 @default.
- W2566849112 date "2017-04-01" @default.
- W2566849112 modified "2023-10-12" @default.
- W2566849112 title "EEG-Based Strategies to Detect Motor Imagery for Control and Rehabilitation" @default.
- W2566849112 cites W1574259661 @default.
- W2566849112 cites W1596426405 @default.
- W2566849112 cites W1674182651 @default.
- W2566849112 cites W1871047159 @default.
- W2566849112 cites W1969223073 @default.
- W2566849112 cites W1969878365 @default.
- W2566849112 cites W1970242638 @default.
- W2566849112 cites W1976715276 @default.
- W2566849112 cites W1989927577 @default.
- W2566849112 cites W1994043269 @default.
- W2566849112 cites W2003621157 @default.
- W2566849112 cites W2005479959 @default.
- W2566849112 cites W2006082701 @default.
- W2566849112 cites W2008359193 @default.
- W2566849112 cites W2020253000 @default.
- W2566849112 cites W2025079059 @default.
- W2566849112 cites W2026186900 @default.
- W2566849112 cites W2030195614 @default.
- W2566849112 cites W2030729605 @default.
- W2566849112 cites W2034655243 @default.
- W2566849112 cites W2035375137 @default.
- W2566849112 cites W2041998778 @default.
- W2566849112 cites W2044455804 @default.
- W2566849112 cites W2044543358 @default.
- W2566849112 cites W2047890702 @default.
- W2566849112 cites W2052194844 @default.
- W2566849112 cites W2059915684 @default.
- W2566849112 cites W2066584143 @default.
- W2566849112 cites W2087287335 @default.
- W2566849112 cites W2090742777 @default.
- W2566849112 cites W2094717680 @default.
- W2566849112 cites W2098644279 @default.
- W2566849112 cites W2099509424 @default.
- W2566849112 cites W2099641226 @default.
- W2566849112 cites W2103494817 @default.
- W2566849112 cites W2104051871 @default.
- W2566849112 cites W2105162422 @default.
- W2566849112 cites W2116308679 @default.
- W2566849112 cites W2121682721 @default.
- W2566849112 cites W2122034366 @default.
- W2566849112 cites W2125814313 @default.
- W2566849112 cites W2126686521 @default.
- W2566849112 cites W2128404967 @default.
- W2566849112 cites W2130705118 @default.
- W2566849112 cites W2131251829 @default.
- W2566849112 cites W2133561518 @default.
- W2566849112 cites W2137049752 @default.
- W2566849112 cites W2140372133 @default.
- W2566849112 cites W2140413964 @default.
- W2566849112 cites W2141885969 @default.
- W2566849112 cites W2142280324 @default.
- W2566849112 cites W2144175475 @default.
- W2566849112 cites W2144383914 @default.
- W2566849112 cites W2145482409 @default.
- W2566849112 cites W2146222196 @default.
- W2566849112 cites W2146496894 @default.
- W2566849112 cites W2158573165 @default.
- W2566849112 cites W2160609907 @default.
- W2566849112 cites W2163310171 @default.
- W2566849112 cites W2163486304 @default.
- W2566849112 cites W2165177179 @default.
- W2566849112 cites W2165892205 @default.
- W2566849112 cites W2169813833 @default.
- W2566849112 cites W2170059436 @default.
- W2566849112 cites W2171931442 @default.
- W2566849112 cites W2199391040 @default.
- W2566849112 cites W2408675736 @default.
- W2566849112 cites W2498264865 @default.
- W2566849112 cites W2586859031 @default.
- W2566849112 doi "https://doi.org/10.1109/tnsre.2016.2646763" @default.
- W2566849112 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28055887" @default.
- W2566849112 hasPublicationYear "2017" @default.
- W2566849112 type Work @default.
- W2566849112 sameAs 2566849112 @default.
- W2566849112 citedByCount "163" @default.
- W2566849112 countsByYear W25668491122017 @default.
- W2566849112 countsByYear W25668491122018 @default.
- W2566849112 countsByYear W25668491122019 @default.
- W2566849112 countsByYear W25668491122020 @default.
- W2566849112 countsByYear W25668491122021 @default.
- W2566849112 countsByYear W25668491122022 @default.
- W2566849112 countsByYear W25668491122023 @default.
- W2566849112 crossrefType "journal-article" @default.
- W2566849112 hasAuthorship W2566849112A5031778999 @default.
- W2566849112 hasAuthorship W2566849112A5066840869 @default.
- W2566849112 hasConcept C105795698 @default.
- W2566849112 hasConcept C119857082 @default.
- W2566849112 hasConcept C154945302 @default.
- W2566849112 hasConcept C15744967 @default.
- W2566849112 hasConcept C165838908 @default.
- W2566849112 hasConcept C169760540 @default.