Matches in SemOpenAlex for { <https://semopenalex.org/work/W2566868490> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2566868490 endingPage "271" @default.
- W2566868490 startingPage "262" @default.
- W2566868490 abstract "In this paper, we propose a Bayesian hierarchical model for predicting accident counts in future years at sites within a pool of potential road safety hotspots. The aim is to inform road safety practitioners of the location of likely future hotspots to enable a proactive, rather than reactive, approach to road safety scheme implementation. A feature of our model is the ability to rank sites according to their potential to exceed, in some future time period, a threshold accident count which may be used as a criterion for scheme implementation. Our model specification enables the classical empirical Bayes formulation – commonly used in before-and-after studies, wherein accident counts from a single before period are used to estimate counterfactual counts in the after period – to be extended to incorporate counts from multiple time periods. This allows site-specific variations in historical accident counts (e.g. locally-observed trends) to offset estimates of safety generated by a global accident prediction model (APM), which itself is used to help account for the effects of global trend and regression-to-mean (RTM). The Bayesian posterior predictive distribution is exploited to formulate predictions and to properly quantify our uncertainty in these predictions. The main contributions of our model include (i) the ability to allow accident counts from multiple time-points to inform predictions, with counts in more recent years lending more weight to predictions than counts from time-points further in the past; (ii) where appropriate, the ability to offset global estimates of trend by variations in accident counts observed locally, at a site-specific level; and (iii) the ability to account for unknown/unobserved site-specific factors which may affect accident counts. We illustrate our model with an application to accident counts at 734 potential hotspots in the German city of Halle; we also propose some simple diagnostics to validate the predictive capability of our model. We conclude that our model accurately predicts future accident counts, with point estimates from the predictive distribution matching observed counts extremely well." @default.
- W2566868490 created "2017-01-06" @default.
- W2566868490 creator A5015458273 @default.
- W2566868490 creator A5030899252 @default.
- W2566868490 creator A5089448712 @default.
- W2566868490 creator A5091796153 @default.
- W2566868490 date "2017-02-01" @default.
- W2566868490 modified "2023-10-03" @default.
- W2566868490 title "A novel Bayesian hierarchical model for road safety hotspot prediction" @default.
- W2566868490 cites W1592056483 @default.
- W2566868490 cites W1980754469 @default.
- W2566868490 cites W2032282688 @default.
- W2566868490 cites W2040026814 @default.
- W2566868490 cites W2046696691 @default.
- W2566868490 cites W2057020884 @default.
- W2566868490 cites W2058291794 @default.
- W2566868490 cites W2062855045 @default.
- W2566868490 cites W2066509360 @default.
- W2566868490 cites W2079775093 @default.
- W2566868490 cites W2115855457 @default.
- W2566868490 doi "https://doi.org/10.1016/j.aap.2016.11.021" @default.
- W2566868490 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27987412" @default.
- W2566868490 hasPublicationYear "2017" @default.
- W2566868490 type Work @default.
- W2566868490 sameAs 2566868490 @default.
- W2566868490 citedByCount "32" @default.
- W2566868490 countsByYear W25668684902017 @default.
- W2566868490 countsByYear W25668684902018 @default.
- W2566868490 countsByYear W25668684902019 @default.
- W2566868490 countsByYear W25668684902020 @default.
- W2566868490 countsByYear W25668684902021 @default.
- W2566868490 countsByYear W25668684902022 @default.
- W2566868490 countsByYear W25668684902023 @default.
- W2566868490 crossrefType "journal-article" @default.
- W2566868490 hasAuthorship W2566868490A5015458273 @default.
- W2566868490 hasAuthorship W2566868490A5030899252 @default.
- W2566868490 hasAuthorship W2566868490A5089448712 @default.
- W2566868490 hasAuthorship W2566868490A5091796153 @default.
- W2566868490 hasBestOaLocation W25668684901 @default.
- W2566868490 hasConcept C105795698 @default.
- W2566868490 hasConcept C107673813 @default.
- W2566868490 hasConcept C127313418 @default.
- W2566868490 hasConcept C146481406 @default.
- W2566868490 hasConcept C149782125 @default.
- W2566868490 hasConcept C160234255 @default.
- W2566868490 hasConcept C175291020 @default.
- W2566868490 hasConcept C199360897 @default.
- W2566868490 hasConcept C207201462 @default.
- W2566868490 hasConcept C3017944768 @default.
- W2566868490 hasConcept C33923547 @default.
- W2566868490 hasConcept C41008148 @default.
- W2566868490 hasConcept C71924100 @default.
- W2566868490 hasConcept C8058405 @default.
- W2566868490 hasConcept C99454951 @default.
- W2566868490 hasConceptScore W2566868490C105795698 @default.
- W2566868490 hasConceptScore W2566868490C107673813 @default.
- W2566868490 hasConceptScore W2566868490C127313418 @default.
- W2566868490 hasConceptScore W2566868490C146481406 @default.
- W2566868490 hasConceptScore W2566868490C149782125 @default.
- W2566868490 hasConceptScore W2566868490C160234255 @default.
- W2566868490 hasConceptScore W2566868490C175291020 @default.
- W2566868490 hasConceptScore W2566868490C199360897 @default.
- W2566868490 hasConceptScore W2566868490C207201462 @default.
- W2566868490 hasConceptScore W2566868490C3017944768 @default.
- W2566868490 hasConceptScore W2566868490C33923547 @default.
- W2566868490 hasConceptScore W2566868490C41008148 @default.
- W2566868490 hasConceptScore W2566868490C71924100 @default.
- W2566868490 hasConceptScore W2566868490C8058405 @default.
- W2566868490 hasConceptScore W2566868490C99454951 @default.
- W2566868490 hasLocation W25668684901 @default.
- W2566868490 hasLocation W25668684902 @default.
- W2566868490 hasLocation W25668684903 @default.
- W2566868490 hasLocation W25668684904 @default.
- W2566868490 hasOpenAccess W2566868490 @default.
- W2566868490 hasPrimaryLocation W25668684901 @default.
- W2566868490 hasRelatedWork W1484846154 @default.
- W2566868490 hasRelatedWork W2038613186 @default.
- W2566868490 hasRelatedWork W2117545158 @default.
- W2566868490 hasRelatedWork W2129463378 @default.
- W2566868490 hasRelatedWork W2399932201 @default.
- W2566868490 hasRelatedWork W2507458234 @default.
- W2566868490 hasRelatedWork W2772689174 @default.
- W2566868490 hasRelatedWork W3081214562 @default.
- W2566868490 hasRelatedWork W322979909 @default.
- W2566868490 hasRelatedWork W2183029047 @default.
- W2566868490 hasVolume "99" @default.
- W2566868490 isParatext "false" @default.
- W2566868490 isRetracted "false" @default.
- W2566868490 magId "2566868490" @default.
- W2566868490 workType "article" @default.