Matches in SemOpenAlex for { <https://semopenalex.org/work/W2567201181> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2567201181 abstract "Massive Open Online Courses (MOOCs) are freely available courses offered online for distance based learners who have access to the internet. The tremendous success of MOOCs can in part, be attributed to their global availability, enabling anyone in the world to sign up/drop courses at any time during the course offerings. Course enrollment in MOOCs often range between 10,000 to 200,000 students, thereby providing a potentially rich venue for large scale digital data (e.g., student course comments, temporal and geo-location data, etc.). However, despite the overabundance of digital data generated through MOOCs, research into how student interactions in MOOCs translate to student performance and learning outcomes is limited. The objective of this research is to mine student-generated textual data (e.g., online discussion forums) existing in MOOCs in order to quantify their impact on student performance and learning outcomes. Student performance is quantified based on grades attained in course homework assignments, quizzes and examinations. Similar to in-class learning environments, students enrolled in MOOCs often self-organize and form learning groups, where course topics and assignments can be discussed. One of the major benefits of MOOC data is that student networks and discussion therein are digitally stored and readily available for data mining/statistical analysis. The proposed methodology employs robust natural language processing techniques and data mining algorithms to quantify temporal changes in student sentiments relating to course topics and instructor clarity. Researchers aim to determine whether textual content (e.g., quality VS quantity of student forum discussions) expressed through MOOCs can serve as leading indicators of student performance in MOOCs. A case study involving the Introduction to Art: Concepts and Techniques offered by Penn State University through the Coursera platform, is used to validate the proposed methodology." @default.
- W2567201181 created "2017-01-06" @default.
- W2567201181 creator A5000059861 @default.
- W2567201181 creator A5018232256 @default.
- W2567201181 creator A5060631072 @default.
- W2567201181 date "2020-09-04" @default.
- W2567201181 modified "2023-09-24" @default.
- W2567201181 title "Mining Student-Generated Textual Data In MOOCS and Quantifying Their Effects on Student Performance and Learning Outcomes" @default.
- W2567201181 cites W1581485226 @default.
- W2567201181 cites W1880262756 @default.
- W2567201181 cites W2005311637 @default.
- W2567201181 cites W2006444123 @default.
- W2567201181 cites W2025330985 @default.
- W2567201181 cites W2027711578 @default.
- W2567201181 cites W2084046180 @default.
- W2567201181 cites W2097726431 @default.
- W2567201181 cites W2114281212 @default.
- W2567201181 cites W2119902448 @default.
- W2567201181 cites W2139471083 @default.
- W2567201181 cites W2140190241 @default.
- W2567201181 cites W2145912399 @default.
- W2567201181 cites W2147152072 @default.
- W2567201181 cites W2150364563 @default.
- W2567201181 cites W2159021374 @default.
- W2567201181 cites W2161846127 @default.
- W2567201181 cites W2166549815 @default.
- W2567201181 cites W2171468534 @default.
- W2567201181 cites W2213863807 @default.
- W2567201181 cites W2231611174 @default.
- W2567201181 cites W2471699996 @default.
- W2567201181 cites W2553654220 @default.
- W2567201181 cites W2729722095 @default.
- W2567201181 cites W2823260 @default.
- W2567201181 doi "https://doi.org/10.18260/1-2--22840" @default.
- W2567201181 hasPublicationYear "2020" @default.
- W2567201181 type Work @default.
- W2567201181 sameAs 2567201181 @default.
- W2567201181 citedByCount "20" @default.
- W2567201181 countsByYear W25672011812015 @default.
- W2567201181 countsByYear W25672011812016 @default.
- W2567201181 countsByYear W25672011812017 @default.
- W2567201181 countsByYear W25672011812018 @default.
- W2567201181 countsByYear W25672011812019 @default.
- W2567201181 countsByYear W25672011812021 @default.
- W2567201181 countsByYear W25672011812022 @default.
- W2567201181 crossrefType "proceedings-article" @default.
- W2567201181 hasAuthorship W2567201181A5000059861 @default.
- W2567201181 hasAuthorship W2567201181A5018232256 @default.
- W2567201181 hasAuthorship W2567201181A5060631072 @default.
- W2567201181 hasBestOaLocation W25672011812 @default.
- W2567201181 hasConcept C110875604 @default.
- W2567201181 hasConcept C136764020 @default.
- W2567201181 hasConcept C145420912 @default.
- W2567201181 hasConcept C154945302 @default.
- W2567201181 hasConcept C15744967 @default.
- W2567201181 hasConcept C185592680 @default.
- W2567201181 hasConcept C194519906 @default.
- W2567201181 hasConcept C2522767166 @default.
- W2567201181 hasConcept C2777146004 @default.
- W2567201181 hasConcept C2777212361 @default.
- W2567201181 hasConcept C2777808570 @default.
- W2567201181 hasConcept C2778370464 @default.
- W2567201181 hasConcept C2986087404 @default.
- W2567201181 hasConcept C41008148 @default.
- W2567201181 hasConcept C49774154 @default.
- W2567201181 hasConcept C55493867 @default.
- W2567201181 hasConceptScore W2567201181C110875604 @default.
- W2567201181 hasConceptScore W2567201181C136764020 @default.
- W2567201181 hasConceptScore W2567201181C145420912 @default.
- W2567201181 hasConceptScore W2567201181C154945302 @default.
- W2567201181 hasConceptScore W2567201181C15744967 @default.
- W2567201181 hasConceptScore W2567201181C185592680 @default.
- W2567201181 hasConceptScore W2567201181C194519906 @default.
- W2567201181 hasConceptScore W2567201181C2522767166 @default.
- W2567201181 hasConceptScore W2567201181C2777146004 @default.
- W2567201181 hasConceptScore W2567201181C2777212361 @default.
- W2567201181 hasConceptScore W2567201181C2777808570 @default.
- W2567201181 hasConceptScore W2567201181C2778370464 @default.
- W2567201181 hasConceptScore W2567201181C2986087404 @default.
- W2567201181 hasConceptScore W2567201181C41008148 @default.
- W2567201181 hasConceptScore W2567201181C49774154 @default.
- W2567201181 hasConceptScore W2567201181C55493867 @default.
- W2567201181 hasLocation W25672011811 @default.
- W2567201181 hasLocation W25672011812 @default.
- W2567201181 hasOpenAccess W2567201181 @default.
- W2567201181 hasPrimaryLocation W25672011811 @default.
- W2567201181 hasRelatedWork W10130694 @default.
- W2567201181 hasRelatedWork W10931660 @default.
- W2567201181 hasRelatedWork W11731714 @default.
- W2567201181 hasRelatedWork W11991885 @default.
- W2567201181 hasRelatedWork W13710472 @default.
- W2567201181 hasRelatedWork W1872877 @default.
- W2567201181 hasRelatedWork W2049211 @default.
- W2567201181 hasRelatedWork W3800311 @default.
- W2567201181 hasRelatedWork W6161656 @default.
- W2567201181 hasRelatedWork W8589957 @default.
- W2567201181 isParatext "false" @default.
- W2567201181 isRetracted "false" @default.
- W2567201181 magId "2567201181" @default.
- W2567201181 workType "article" @default.