Matches in SemOpenAlex for { <https://semopenalex.org/work/W2567284472> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2567284472 endingPage "8243" @default.
- W2567284472 startingPage "8199" @default.
- W2567284472 abstract "It is important for causal discovery to identify any latent variables that govern a problem and the relationships among them, given measurements in the observed world. In Part I of this paper, we were interested in learning a discrete latent variable model (LVM) and introduced the concept of pairwise cluster comparison (PCC) to identify causal relationships from clusters of data points and an overview of a two-stage algorithm for learning PCC (LPCC). First, LPCC learns exogenous latent variables and latent colliders, as well as their observed descendants, by using pairwise comparisons between data clusters in the measurement space that may explain latent causes. Second, LPCC identifies endogenous latent non-colliders with their observed children. In Part I, we showed that if the true graph has no serial connections, then LPCC returns the true graph, and if the true graph has a serial connection, then LPCC returns a pattern of the true graph. In this paper (Part II), we formally introduce the LPCC algorithm that implements the PCC concept. In addition, we thoroughly evaluate LPCC using simulated and real-world data sets in comparison to state-of-the-art algorithms. Besides using three real-world data sets, which have already been tested in learning an LVM, we also evaluate the algorithms using data sets that represent two original problems. The first problem is identifying young drivers' involvement in road accidents, and the second is identifying cellular subpopulations of the immune system from mass cytometry. The results of our evaluation show that LPCC improves in accuracy with the sample size, can learn large LVMs, and is accurate in learning compared to state-of-the-art algorithms. The code for the LPCC algorithm and data sets used in the experiments reported here are available online." @default.
- W2567284472 created "2017-01-06" @default.
- W2567284472 creator A5035106648 @default.
- W2567284472 creator A5045105508 @default.
- W2567284472 date "2016-01-01" @default.
- W2567284472 modified "2023-09-28" @default.
- W2567284472 title "Learning latent variable models by pairwise cluster comparison Part II: algorithm and evaluation" @default.
- W2567284472 cites W1524326598 @default.
- W2567284472 cites W1679913846 @default.
- W2567284472 cites W2018084659 @default.
- W2567284472 cites W2031869443 @default.
- W2567284472 cites W2049633694 @default.
- W2567284472 cites W2060542838 @default.
- W2567284472 cites W2097665571 @default.
- W2567284472 cites W2103160678 @default.
- W2567284472 cites W2114074445 @default.
- W2567284472 cites W2115651312 @default.
- W2567284472 cites W2115881827 @default.
- W2567284472 cites W2123891761 @default.
- W2567284472 cites W2123959143 @default.
- W2567284472 cites W2132434674 @default.
- W2567284472 cites W2137099275 @default.
- W2567284472 cites W2143451223 @default.
- W2567284472 cites W2160172778 @default.
- W2567284472 cites W2165190832 @default.
- W2567284472 cites W2170752989 @default.
- W2567284472 cites W2554987453 @default.
- W2567284472 cites W3128632218 @default.
- W2567284472 cites W3133236490 @default.
- W2567284472 cites W3157264244 @default.
- W2567284472 hasPublicationYear "2016" @default.
- W2567284472 type Work @default.
- W2567284472 sameAs 2567284472 @default.
- W2567284472 citedByCount "2" @default.
- W2567284472 countsByYear W25672844722016 @default.
- W2567284472 countsByYear W25672844722020 @default.
- W2567284472 crossrefType "journal-article" @default.
- W2567284472 hasAuthorship W2567284472A5035106648 @default.
- W2567284472 hasAuthorship W2567284472A5045105508 @default.
- W2567284472 hasConcept C11413529 @default.
- W2567284472 hasConcept C119857082 @default.
- W2567284472 hasConcept C132525143 @default.
- W2567284472 hasConcept C153180895 @default.
- W2567284472 hasConcept C154945302 @default.
- W2567284472 hasConcept C164866538 @default.
- W2567284472 hasConcept C184898388 @default.
- W2567284472 hasConcept C199360897 @default.
- W2567284472 hasConcept C33923547 @default.
- W2567284472 hasConcept C41008148 @default.
- W2567284472 hasConcept C51167844 @default.
- W2567284472 hasConcept C65965080 @default.
- W2567284472 hasConcept C80444323 @default.
- W2567284472 hasConceptScore W2567284472C11413529 @default.
- W2567284472 hasConceptScore W2567284472C119857082 @default.
- W2567284472 hasConceptScore W2567284472C132525143 @default.
- W2567284472 hasConceptScore W2567284472C153180895 @default.
- W2567284472 hasConceptScore W2567284472C154945302 @default.
- W2567284472 hasConceptScore W2567284472C164866538 @default.
- W2567284472 hasConceptScore W2567284472C184898388 @default.
- W2567284472 hasConceptScore W2567284472C199360897 @default.
- W2567284472 hasConceptScore W2567284472C33923547 @default.
- W2567284472 hasConceptScore W2567284472C41008148 @default.
- W2567284472 hasConceptScore W2567284472C51167844 @default.
- W2567284472 hasConceptScore W2567284472C65965080 @default.
- W2567284472 hasConceptScore W2567284472C80444323 @default.
- W2567284472 hasIssue "1" @default.
- W2567284472 hasLocation W25672844721 @default.
- W2567284472 hasOpenAccess W2567284472 @default.
- W2567284472 hasPrimaryLocation W25672844721 @default.
- W2567284472 hasRelatedWork W1536437046 @default.
- W2567284472 hasRelatedWork W1595066706 @default.
- W2567284472 hasRelatedWork W1986273313 @default.
- W2567284472 hasRelatedWork W2051051423 @default.
- W2567284472 hasRelatedWork W2068796594 @default.
- W2567284472 hasRelatedWork W2084431760 @default.
- W2567284472 hasRelatedWork W2130376054 @default.
- W2567284472 hasRelatedWork W2146646206 @default.
- W2567284472 hasRelatedWork W2189221962 @default.
- W2567284472 hasRelatedWork W2301058445 @default.
- W2567284472 hasRelatedWork W2594588300 @default.
- W2567284472 hasRelatedWork W2789701619 @default.
- W2567284472 hasRelatedWork W2862690536 @default.
- W2567284472 hasRelatedWork W2888677903 @default.
- W2567284472 hasRelatedWork W2949723534 @default.
- W2567284472 hasRelatedWork W2963211851 @default.
- W2567284472 hasRelatedWork W2972860670 @default.
- W2567284472 hasRelatedWork W3171440465 @default.
- W2567284472 hasRelatedWork W71150983 @default.
- W2567284472 hasRelatedWork W1982875495 @default.
- W2567284472 hasVolume "17" @default.
- W2567284472 isParatext "false" @default.
- W2567284472 isRetracted "false" @default.
- W2567284472 magId "2567284472" @default.
- W2567284472 workType "article" @default.