Matches in SemOpenAlex for { <https://semopenalex.org/work/W2567701579> ?p ?o ?g. }
- W2567701579 abstract "We consider the following oblivious sketching problem: given $epsilon in (0,1/3)$ and $n geq d/epsilon^2$, design a distribution $mathcal{D}$ over $mathbb{R}^{k times nd}$ and a function $f: mathbb{R}^k times mathbb{R}^{nd} rightarrow mathbb{R}$, so that for any $n times d$ matrix $A$, $$Pr_{S sim mathcal{D}} [(1-epsilon) |A|_{op} leq f(S(A),S) leq (1+epsilon)|A|_{op}] geq 2/3,$$ where $|A|_{op}$ is the operator norm of $A$ and $S(A)$ denotes $S cdot A$, interpreting $A$ as a vector in $mathbb{R}^{nd}$. We show a tight lower bound of $k = Omega(d^2/epsilon^2)$ for this problem. Our result considerably strengthens the result of Nelson and Nguyen (ICALP, 2014), as it (1) applies only to estimating the operator norm, which can be estimated given any OSE, and (2) applies to distributions over general linear operators $S$ which treat $A$ as a vector and compute $S(A)$, rather than the restricted class of linear operators corresponding to matrix multiplication. Our technique also implies the first tight bounds for approximating the Schatten $p$-norm for even integers $p$ via general linear sketches, improving the previous lower bound from $k = Omega(n^{2-6/p})$ [Regev, 2014] to $k = Omega(n^{2-4/p})$. Importantly, for sketching the operator norm up to a factor of $alpha$, where $alpha - 1 = Omega(1)$, we obtain a tight $k = Omega(n^2/alpha^4)$ bound, matching the upper bound of Andoni and Nguyen (SODA, 2013), and improving the previous $k = Omega(n^2/alpha^6)$ lower bound. Finally, we also obtain the first lower bounds for approximating Ky Fan norms." @default.
- W2567701579 created "2017-01-06" @default.
- W2567701579 creator A5024805876 @default.
- W2567701579 creator A5064842058 @default.
- W2567701579 date "2022-02-20" @default.
- W2567701579 modified "2023-09-27" @default.
- W2567701579 title "Tight Bounds for Sketching the Operator Norm, Schatten Norms, and Subspace Embeddings" @default.
- W2567701579 cites W1269180741 @default.
- W2567701579 cites W1485490327 @default.
- W2567701579 cites W1491961545 @default.
- W2567701579 cites W1502103205 @default.
- W2567701579 cites W1510593638 @default.
- W2567701579 cites W1511694993 @default.
- W2567701579 cites W1512493349 @default.
- W2567701579 cites W1522759062 @default.
- W2567701579 cites W1546584436 @default.
- W2567701579 cites W1608038806 @default.
- W2567701579 cites W1617753329 @default.
- W2567701579 cites W1980223785 @default.
- W2567701579 cites W1983068660 @default.
- W2567701579 cites W1991099830 @default.
- W2567701579 cites W1998272044 @default.
- W2567701579 cites W2003425214 @default.
- W2567701579 cites W2037795929 @default.
- W2567701579 cites W2040088116 @default.
- W2567701579 cites W2040583004 @default.
- W2567701579 cites W2045533739 @default.
- W2567701579 cites W2053182026 @default.
- W2567701579 cites W2059867647 @default.
- W2567701579 cites W2060385919 @default.
- W2567701579 cites W2062881383 @default.
- W2567701579 cites W2069414131 @default.
- W2567701579 cites W2070486524 @default.
- W2567701579 cites W2075290628 @default.
- W2567701579 cites W2080234606 @default.
- W2567701579 cites W2080745194 @default.
- W2567701579 cites W2101043704 @default.
- W2567701579 cites W2113623631 @default.
- W2567701579 cites W2121689290 @default.
- W2567701579 cites W2124155943 @default.
- W2567701579 cites W2124608575 @default.
- W2567701579 cites W2128968922 @default.
- W2567701579 cites W2132822431 @default.
- W2567701579 cites W2134342155 @default.
- W2567701579 cites W2146232410 @default.
- W2567701579 cites W2148488235 @default.
- W2567701579 cites W2152489475 @default.
- W2567701579 cites W2157988812 @default.
- W2567701579 cites W2158044763 @default.
- W2567701579 cites W2167099561 @default.
- W2567701579 cites W2169917686 @default.
- W2567701579 cites W2170204206 @default.
- W2567701579 cites W2183103404 @default.
- W2567701579 cites W2219996931 @default.
- W2567701579 cites W2265765035 @default.
- W2567701579 cites W2287950946 @default.
- W2567701579 cites W2293755460 @default.
- W2567701579 cites W2293965695 @default.
- W2567701579 cites W2344844563 @default.
- W2567701579 cites W2405181117 @default.
- W2567701579 cites W2962707756 @default.
- W2567701579 cites W2962922559 @default.
- W2567701579 cites W602904462 @default.
- W2567701579 cites W638415167 @default.
- W2567701579 cites W8957553 @default.
- W2567701579 cites W3143416509 @default.
- W2567701579 doi "https://doi.org/10.48550/arxiv.2202.09797" @default.
- W2567701579 hasPublicationYear "2022" @default.
- W2567701579 type Work @default.
- W2567701579 sameAs 2567701579 @default.
- W2567701579 citedByCount "10" @default.
- W2567701579 countsByYear W25677015792016 @default.
- W2567701579 countsByYear W25677015792017 @default.
- W2567701579 countsByYear W25677015792018 @default.
- W2567701579 countsByYear W25677015792019 @default.
- W2567701579 countsByYear W25677015792020 @default.
- W2567701579 crossrefType "posted-content" @default.
- W2567701579 hasAuthorship W2567701579A5024805876 @default.
- W2567701579 hasAuthorship W2567701579A5064842058 @default.
- W2567701579 hasBestOaLocation W25677015791 @default.
- W2567701579 hasConcept C104317684 @default.
- W2567701579 hasConcept C106487976 @default.
- W2567701579 hasConcept C114614502 @default.
- W2567701579 hasConcept C118615104 @default.
- W2567701579 hasConcept C121332964 @default.
- W2567701579 hasConcept C134306372 @default.
- W2567701579 hasConcept C158448853 @default.
- W2567701579 hasConcept C159985019 @default.
- W2567701579 hasConcept C17020691 @default.
- W2567701579 hasConcept C17744445 @default.
- W2567701579 hasConcept C185592680 @default.
- W2567701579 hasConcept C191795146 @default.
- W2567701579 hasConcept C192562407 @default.
- W2567701579 hasConcept C199539241 @default.
- W2567701579 hasConcept C2779557605 @default.
- W2567701579 hasConcept C33923547 @default.
- W2567701579 hasConcept C43929395 @default.
- W2567701579 hasConcept C55493867 @default.
- W2567701579 hasConcept C62520636 @default.
- W2567701579 hasConcept C68386474 @default.