Matches in SemOpenAlex for { <https://semopenalex.org/work/W2567742990> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2567742990 endingPage "66" @default.
- W2567742990 startingPage "47" @default.
- W2567742990 abstract "In the Poisson Regressions, which belong to a class of the Generalized Linear Model, all independent variables, except a scale (offset) variable, often consist of category variables. The typical cases are two-way or multi-way contingency tables, in which each count value of a cell follows the Poisson law with a mean determined by its category position in the table. This paper treats, specifically, the algorithms for obtaining the maximum likelihood estimates (MLE) of such all category Poisson Regression cases, which can be expressed generally as multilinear forms with respect to unknown parameters. For finding the MLEs of the Poisson multilinear structures, a simple and globally stable Gauss-Seidel algorithm exists. The algorithm, based on partial MLE equations, is sufficiently fast in small-sample cases. When it is preferable to accelerate the steady but not fast Gauss-Seidel algorithm, a highly efficient algorithm, which utilizes Hessian information of likelihood functions without matrix inversions, is derived and examined on some small examples. This acceleration algorithm can be interpreted as an advance version of the Successive Over-Relaxation (SOR) method. Hence, the acceleration principle developed in this paper has applicability to a wider class of problems such as optimizations or solving systems of equations, in which the Gauss-Seidel, the SOR, or the other methods are currently used. The simplicity and efficiency of the algorithms enable to introduce the Poisson multilinear models into automatic and problem-oriented applications, typically implemented in relatively slow-speed environments such as on-Web or spreadsheet platforms. I Poisson Multilinear Models Let x1, x2, ..., xn be mutually independent Poisson random variables having probabilities defined by (1) { } ( )( )( ) n k x e x x P k k k x k k k k , , 1 , 1 , 0 0 ! L L = = > = − λ λ λ , whose mean λk has a multilinear form: (2) ( )( ) p i e θ c θ θ θ c λ ki i k e p e e k k kp k k , , 1 1 or 0 , 0 , 0 2 1 2 1 L L = = > > =" @default.
- W2567742990 created "2017-01-13" @default.
- W2567742990 creator A5064891250 @default.
- W2567742990 date "2006-03-01" @default.
- W2567742990 modified "2023-09-23" @default.
- W2567742990 title "Maximum Likelihood Estimates of Poisson Multilinear Models" @default.
- W2567742990 cites W1575701986 @default.
- W2567742990 cites W1991478879 @default.
- W2567742990 cites W2006272953 @default.
- W2567742990 cites W2067291657 @default.
- W2567742990 cites W2136744117 @default.
- W2567742990 cites W2801490189 @default.
- W2567742990 hasPublicationYear "2006" @default.
- W2567742990 type Work @default.
- W2567742990 sameAs 2567742990 @default.
- W2567742990 citedByCount "0" @default.
- W2567742990 crossrefType "journal-article" @default.
- W2567742990 hasAuthorship W2567742990A5064891250 @default.
- W2567742990 hasConcept C100906024 @default.
- W2567742990 hasConcept C105795698 @default.
- W2567742990 hasConcept C11413529 @default.
- W2567742990 hasConcept C126255220 @default.
- W2567742990 hasConcept C202444582 @default.
- W2567742990 hasConcept C203616005 @default.
- W2567742990 hasConcept C28826006 @default.
- W2567742990 hasConcept C33923547 @default.
- W2567742990 hasConcept C84392682 @default.
- W2567742990 hasConceptScore W2567742990C100906024 @default.
- W2567742990 hasConceptScore W2567742990C105795698 @default.
- W2567742990 hasConceptScore W2567742990C11413529 @default.
- W2567742990 hasConceptScore W2567742990C126255220 @default.
- W2567742990 hasConceptScore W2567742990C202444582 @default.
- W2567742990 hasConceptScore W2567742990C203616005 @default.
- W2567742990 hasConceptScore W2567742990C28826006 @default.
- W2567742990 hasConceptScore W2567742990C33923547 @default.
- W2567742990 hasConceptScore W2567742990C84392682 @default.
- W2567742990 hasLocation W25677429901 @default.
- W2567742990 hasOpenAccess W2567742990 @default.
- W2567742990 hasPrimaryLocation W25677429901 @default.
- W2567742990 hasRelatedWork W1659503802 @default.
- W2567742990 hasRelatedWork W2041865918 @default.
- W2567742990 hasRelatedWork W2069690626 @default.
- W2567742990 hasRelatedWork W2087600519 @default.
- W2567742990 hasRelatedWork W2329471078 @default.
- W2567742990 hasRelatedWork W2733628767 @default.
- W2567742990 hasRelatedWork W2798965258 @default.
- W2567742990 hasRelatedWork W2944236149 @default.
- W2567742990 hasRelatedWork W2949397613 @default.
- W2567742990 hasRelatedWork W2949958399 @default.
- W2567742990 hasRelatedWork W2951054687 @default.
- W2567742990 hasRelatedWork W2951237229 @default.
- W2567742990 hasRelatedWork W2951314997 @default.
- W2567742990 hasRelatedWork W2962957329 @default.
- W2567742990 hasRelatedWork W2963103105 @default.
- W2567742990 hasRelatedWork W3005747921 @default.
- W2567742990 hasRelatedWork W3096644836 @default.
- W2567742990 hasRelatedWork W3110798296 @default.
- W2567742990 hasRelatedWork W3160382261 @default.
- W2567742990 hasRelatedWork W3178405068 @default.
- W2567742990 hasVolume "51" @default.
- W2567742990 isParatext "false" @default.
- W2567742990 isRetracted "false" @default.
- W2567742990 magId "2567742990" @default.
- W2567742990 workType "article" @default.