Matches in SemOpenAlex for { <https://semopenalex.org/work/W2567804583> ?p ?o ?g. }
- W2567804583 endingPage "1378" @default.
- W2567804583 startingPage "1363" @default.
- W2567804583 abstract "Person re-identification has been widely studied due to its importance in surveillance and forensics applications. In practice, gallery images are high resolution (HR), while probe images are usually low resolution (LR) in the identification scenarios with large variation of illumination, weather, or quality of cameras. Person re-identification in this kind of scenarios, which we call super-resolution (SR) person re-identification, has not been well studied. In this paper, we propose a semi-coupled low-rank discriminant dictionary learning (SLD <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> L) approach for SR person re-identification task. With the HR and LR dictionary pair and mapping matrices learned from the features of HR and LR training images, SLD <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> L can convert the features of the LR probe images into HR features. To ensure that the converted features have favorable discriminative capability and the learned dictionaries can well characterize intrinsic feature spaces of the HR and LR images, we design a discriminant term and a low-rank regularization term for SLD <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> L. Moreover, considering that low resolution results in different degrees of loss for different types of visual appearance features, we propose a multi-view SLD <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> L (MVSLD <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> L) approach, which can learn the type-specific dictionary pair and mappings for each type of feature. Experimental results on multiple publicly available data sets demonstrate the effectiveness of our proposed approaches for the SR person re-identification task." @default.
- W2567804583 created "2017-01-13" @default.
- W2567804583 creator A5012689262 @default.
- W2567804583 creator A5029691902 @default.
- W2567804583 creator A5039792198 @default.
- W2567804583 creator A5050613147 @default.
- W2567804583 creator A5057095711 @default.
- W2567804583 creator A5063288559 @default.
- W2567804583 creator A5070818316 @default.
- W2567804583 creator A5087726516 @default.
- W2567804583 date "2017-03-01" @default.
- W2567804583 modified "2023-10-15" @default.
- W2567804583 title "Super-Resolution Person Re-Identification With Semi-Coupled Low-Rank Discriminant Dictionary Learning" @default.
- W2567804583 cites W1596233070 @default.
- W2567804583 cites W1837223235 @default.
- W2567804583 cites W1920259731 @default.
- W2567804583 cites W1927348918 @default.
- W2567804583 cites W1928419358 @default.
- W2567804583 cites W1949591461 @default.
- W2567804583 cites W1969860370 @default.
- W2567804583 cites W1977556410 @default.
- W2567804583 cites W1992195312 @default.
- W2567804583 cites W1994380990 @default.
- W2567804583 cites W1998443077 @default.
- W2567804583 cites W1999478721 @default.
- W2567804583 cites W2000725150 @default.
- W2567804583 cites W2011952414 @default.
- W2567804583 cites W2014764728 @default.
- W2567804583 cites W2018507448 @default.
- W2567804583 cites W2025247481 @default.
- W2567804583 cites W2037837622 @default.
- W2567804583 cites W2044228764 @default.
- W2567804583 cites W2046835352 @default.
- W2567804583 cites W2062368515 @default.
- W2567804583 cites W2067423536 @default.
- W2567804583 cites W2068042582 @default.
- W2567804583 cites W2088254198 @default.
- W2567804583 cites W2089074647 @default.
- W2567804583 cites W2098699644 @default.
- W2567804583 cites W2103844245 @default.
- W2567804583 cites W2121058967 @default.
- W2567804583 cites W2122378993 @default.
- W2567804583 cites W2125889200 @default.
- W2567804583 cites W2129680231 @default.
- W2567804583 cites W2136995369 @default.
- W2567804583 cites W2139763424 @default.
- W2567804583 cites W2148312679 @default.
- W2567804583 cites W2154624311 @default.
- W2567804583 cites W2157598322 @default.
- W2567804583 cites W2157785665 @default.
- W2567804583 cites W2161969291 @default.
- W2567804583 cites W2164551808 @default.
- W2567804583 cites W2294512729 @default.
- W2567804583 cites W236254921 @default.
- W2567804583 cites W2507470109 @default.
- W2567804583 cites W2522601641 @default.
- W2567804583 cites W3102474984 @default.
- W2567804583 cites W4317524344 @default.
- W2567804583 doi "https://doi.org/10.1109/tip.2017.2651364" @default.
- W2567804583 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28092535" @default.
- W2567804583 hasPublicationYear "2017" @default.
- W2567804583 type Work @default.
- W2567804583 sameAs 2567804583 @default.
- W2567804583 citedByCount "90" @default.
- W2567804583 countsByYear W25678045832017 @default.
- W2567804583 countsByYear W25678045832018 @default.
- W2567804583 countsByYear W25678045832019 @default.
- W2567804583 countsByYear W25678045832020 @default.
- W2567804583 countsByYear W25678045832021 @default.
- W2567804583 countsByYear W25678045832022 @default.
- W2567804583 countsByYear W25678045832023 @default.
- W2567804583 crossrefType "journal-article" @default.
- W2567804583 hasAuthorship W2567804583A5012689262 @default.
- W2567804583 hasAuthorship W2567804583A5029691902 @default.
- W2567804583 hasAuthorship W2567804583A5039792198 @default.
- W2567804583 hasAuthorship W2567804583A5050613147 @default.
- W2567804583 hasAuthorship W2567804583A5057095711 @default.
- W2567804583 hasAuthorship W2567804583A5063288559 @default.
- W2567804583 hasAuthorship W2567804583A5070818316 @default.
- W2567804583 hasAuthorship W2567804583A5087726516 @default.
- W2567804583 hasConcept C116834253 @default.
- W2567804583 hasConcept C119857082 @default.
- W2567804583 hasConcept C153180895 @default.
- W2567804583 hasConcept C154945302 @default.
- W2567804583 hasConcept C41008148 @default.
- W2567804583 hasConcept C59822182 @default.
- W2567804583 hasConcept C69738355 @default.
- W2567804583 hasConcept C78397625 @default.
- W2567804583 hasConcept C86803240 @default.
- W2567804583 hasConcept C97931131 @default.
- W2567804583 hasConceptScore W2567804583C116834253 @default.
- W2567804583 hasConceptScore W2567804583C119857082 @default.
- W2567804583 hasConceptScore W2567804583C153180895 @default.
- W2567804583 hasConceptScore W2567804583C154945302 @default.
- W2567804583 hasConceptScore W2567804583C41008148 @default.
- W2567804583 hasConceptScore W2567804583C59822182 @default.
- W2567804583 hasConceptScore W2567804583C69738355 @default.
- W2567804583 hasConceptScore W2567804583C78397625 @default.