Matches in SemOpenAlex for { <https://semopenalex.org/work/W2567934193> ?p ?o ?g. }
- W2567934193 endingPage "58" @default.
- W2567934193 startingPage "46" @default.
- W2567934193 abstract "Video surveillance has attracted more and more interests in the last decade, video-based Face Recognition (FR) therefore became an important task. However, the surveillance videos include many vague non-frontal faces especially the view of faces looking down and up. As a result, most FR algorithms would perform worse when they were applied in surveillance videos. On the other hand, it was common at video monitoring field that only Single training Sample Per Person (SSPP) is available from their identification card. In order to effectively improve FR for both the SSPP problem and the low-quality problem, this paper proposed an approach to synthesis face images-based on 3D face modeling and blurring. In the proposed algorithm, firstly a 2D frontal face with high-resolution was used to build a 3D face model, then several virtual faces with different poses were synthesized from the 3D model, and finally some degraded face images were constructed from the original and the virtual faces through blurring process. At last multiple face images could be chosen from frontal, virtual and degraded faces to build a training set. Both SCface and LFW databases were employed to evaluate the proposed algorithm by using PCA, FLDA, scale invariant feature transform, compressive sensing and deep learning. The results on both datasets showed that the performance of these methods could be improved when virtual faces were generated to train the classifiers. Furthermore, in SCface database the average recognition rates increased up to 10%, 16.62%, 13.03%, 19.44% and 23.28% respectively for the above-mentioned methods when virtual view and blurred faces were taken to train their classifiers. Experimental results indicated that the proposed method for generating more train samples was effective and could be considered to be applied in intelligent video monitoring system." @default.
- W2567934193 created "2017-01-13" @default.
- W2567934193 creator A5005723679 @default.
- W2567934193 creator A5012278873 @default.
- W2567934193 creator A5080063067 @default.
- W2567934193 creator A5083049952 @default.
- W2567934193 creator A5086034088 @default.
- W2567934193 date "2017-04-01" @default.
- W2567934193 modified "2023-09-28" @default.
- W2567934193 title "Surveillance video face recognition with single sample per person based on 3D modeling and blurring" @default.
- W2567934193 cites W107366105 @default.
- W2567934193 cites W11383935 @default.
- W2567934193 cites W1546200464 @default.
- W2567934193 cites W1912520503 @default.
- W2567934193 cites W1939519089 @default.
- W2567934193 cites W1964435748 @default.
- W2567934193 cites W1967180011 @default.
- W2567934193 cites W1967709755 @default.
- W2567934193 cites W1968935533 @default.
- W2567934193 cites W1983793001 @default.
- W2567934193 cites W1985074645 @default.
- W2567934193 cites W1998639006 @default.
- W2567934193 cites W1999349333 @default.
- W2567934193 cites W2001947174 @default.
- W2567934193 cites W2003867509 @default.
- W2567934193 cites W2007146377 @default.
- W2567934193 cites W2033419168 @default.
- W2567934193 cites W2034626943 @default.
- W2567934193 cites W2037879337 @default.
- W2567934193 cites W2041844365 @default.
- W2567934193 cites W2042899086 @default.
- W2567934193 cites W2046876937 @default.
- W2567934193 cites W2051825853 @default.
- W2567934193 cites W2052503369 @default.
- W2567934193 cites W2054842624 @default.
- W2567934193 cites W2055492845 @default.
- W2567934193 cites W2066316730 @default.
- W2567934193 cites W2067023690 @default.
- W2567934193 cites W2073680184 @default.
- W2567934193 cites W2074776253 @default.
- W2567934193 cites W2087990653 @default.
- W2567934193 cites W2091727050 @default.
- W2567934193 cites W2092966366 @default.
- W2567934193 cites W2095189186 @default.
- W2567934193 cites W2099474347 @default.
- W2567934193 cites W2100240926 @default.
- W2567934193 cites W2104240779 @default.
- W2567934193 cites W2108767394 @default.
- W2567934193 cites W2129812935 @default.
- W2567934193 cites W2130093472 @default.
- W2567934193 cites W2146566773 @default.
- W2567934193 cites W2152208588 @default.
- W2567934193 cites W2167667767 @default.
- W2567934193 cites W2171338122 @default.
- W2567934193 cites W2186481386 @default.
- W2567934193 cites W2242857782 @default.
- W2567934193 cites W2295314495 @default.
- W2567934193 cites W2332606667 @default.
- W2567934193 cites W2953119964 @default.
- W2567934193 cites W4250955649 @default.
- W2567934193 doi "https://doi.org/10.1016/j.neucom.2016.12.059" @default.
- W2567934193 hasPublicationYear "2017" @default.
- W2567934193 type Work @default.
- W2567934193 sameAs 2567934193 @default.
- W2567934193 citedByCount "17" @default.
- W2567934193 countsByYear W25679341932018 @default.
- W2567934193 countsByYear W25679341932019 @default.
- W2567934193 countsByYear W25679341932020 @default.
- W2567934193 countsByYear W25679341932021 @default.
- W2567934193 countsByYear W25679341932022 @default.
- W2567934193 countsByYear W25679341932023 @default.
- W2567934193 crossrefType "journal-article" @default.
- W2567934193 hasAuthorship W2567934193A5005723679 @default.
- W2567934193 hasAuthorship W2567934193A5012278873 @default.
- W2567934193 hasAuthorship W2567934193A5080063067 @default.
- W2567934193 hasAuthorship W2567934193A5083049952 @default.
- W2567934193 hasAuthorship W2567934193A5086034088 @default.
- W2567934193 hasConcept C111919701 @default.
- W2567934193 hasConcept C138885662 @default.
- W2567934193 hasConcept C144024400 @default.
- W2567934193 hasConcept C153180895 @default.
- W2567934193 hasConcept C154945302 @default.
- W2567934193 hasConcept C162324750 @default.
- W2567934193 hasConcept C185592680 @default.
- W2567934193 hasConcept C187736073 @default.
- W2567934193 hasConcept C198531522 @default.
- W2567934193 hasConcept C2776401178 @default.
- W2567934193 hasConcept C2779304628 @default.
- W2567934193 hasConcept C2780451532 @default.
- W2567934193 hasConcept C31510193 @default.
- W2567934193 hasConcept C31972630 @default.
- W2567934193 hasConcept C36289849 @default.
- W2567934193 hasConcept C41008148 @default.
- W2567934193 hasConcept C41895202 @default.
- W2567934193 hasConcept C43617362 @default.
- W2567934193 hasConcept C4641261 @default.
- W2567934193 hasConcept C88799230 @default.
- W2567934193 hasConcept C98045186 @default.