Matches in SemOpenAlex for { <https://semopenalex.org/work/W2568097553> ?p ?o ?g. }
- W2568097553 endingPage "612" @default.
- W2568097553 startingPage "595" @default.
- W2568097553 abstract "In multi-rate systems, identifying non-uniformly sampled data (NUSD) models is a challenge. This study proposes an iteratively recursive least-squares identification algorithm for non-uniformly sampled Wiener systems with dead-zone non-linearities. First, an extended information vector is designed, in which both unknown parameters and inner variables exist. Then, based on the auxiliary model and iterative method, an auxiliary model-based iteratively recursive least-squares algorithm is developed to estimate the system parameters directly. Furthermore, to improve the convergence rate and disturbance rejection, a new modified forgetting factor function is presented. Compared with no or fixed forgetting factor algorithms, the proposed algorithm has a higher convergence speed and is more robust to white noise with different variances. The numerical simulation shows the effectiveness of the proposed algorithm, and it can be extended to other NUSD non-linear systems." @default.
- W2568097553 created "2017-01-13" @default.
- W2568097553 creator A5028264942 @default.
- W2568097553 creator A5032437498 @default.
- W2568097553 creator A5062951448 @default.
- W2568097553 creator A5082787229 @default.
- W2568097553 date "2017-01-09" @default.
- W2568097553 modified "2023-10-14" @default.
- W2568097553 title "Identification of non-uniformly sampled Wiener systems with dead-zone non-linearities" @default.
- W2568097553 cites W1968032347 @default.
- W2568097553 cites W1969790127 @default.
- W2568097553 cites W1974508623 @default.
- W2568097553 cites W1981151982 @default.
- W2568097553 cites W1982716475 @default.
- W2568097553 cites W1988560185 @default.
- W2568097553 cites W2006055599 @default.
- W2568097553 cites W2008712213 @default.
- W2568097553 cites W2009061689 @default.
- W2568097553 cites W2011626820 @default.
- W2568097553 cites W2012196994 @default.
- W2568097553 cites W2014275134 @default.
- W2568097553 cites W2042198335 @default.
- W2568097553 cites W2042757495 @default.
- W2568097553 cites W2044777918 @default.
- W2568097553 cites W2050891910 @default.
- W2568097553 cites W2053871274 @default.
- W2568097553 cites W2053946710 @default.
- W2568097553 cites W2057146525 @default.
- W2568097553 cites W2063620182 @default.
- W2568097553 cites W2063984680 @default.
- W2568097553 cites W2066631874 @default.
- W2568097553 cites W2072523636 @default.
- W2568097553 cites W2073114888 @default.
- W2568097553 cites W2082512543 @default.
- W2568097553 cites W2093958427 @default.
- W2568097553 cites W2094466255 @default.
- W2568097553 cites W2106297219 @default.
- W2568097553 cites W2114816712 @default.
- W2568097553 cites W2116899486 @default.
- W2568097553 cites W2125714142 @default.
- W2568097553 cites W2146207066 @default.
- W2568097553 cites W2157227850 @default.
- W2568097553 cites W2157812947 @default.
- W2568097553 cites W2162638861 @default.
- W2568097553 cites W2168406485 @default.
- W2568097553 cites W2170312047 @default.
- W2568097553 cites W2299834062 @default.
- W2568097553 cites W2393033623 @default.
- W2568097553 doi "https://doi.org/10.1080/13873954.2016.1278392" @default.
- W2568097553 hasPublicationYear "2017" @default.
- W2568097553 type Work @default.
- W2568097553 sameAs 2568097553 @default.
- W2568097553 citedByCount "4" @default.
- W2568097553 countsByYear W25680975532018 @default.
- W2568097553 countsByYear W25680975532019 @default.
- W2568097553 countsByYear W25680975532022 @default.
- W2568097553 countsByYear W25680975532023 @default.
- W2568097553 crossrefType "journal-article" @default.
- W2568097553 hasAuthorship W2568097553A5028264942 @default.
- W2568097553 hasAuthorship W2568097553A5032437498 @default.
- W2568097553 hasAuthorship W2568097553A5062951448 @default.
- W2568097553 hasAuthorship W2568097553A5082787229 @default.
- W2568097553 hasConcept C102248274 @default.
- W2568097553 hasConcept C105795698 @default.
- W2568097553 hasConcept C111368507 @default.
- W2568097553 hasConcept C112633086 @default.
- W2568097553 hasConcept C11413529 @default.
- W2568097553 hasConcept C115961682 @default.
- W2568097553 hasConcept C116834253 @default.
- W2568097553 hasConcept C119247159 @default.
- W2568097553 hasConcept C126255220 @default.
- W2568097553 hasConcept C127313418 @default.
- W2568097553 hasConcept C145249878 @default.
- W2568097553 hasConcept C154945302 @default.
- W2568097553 hasConcept C162324750 @default.
- W2568097553 hasConcept C185429906 @default.
- W2568097553 hasConcept C26517878 @default.
- W2568097553 hasConcept C2775924081 @default.
- W2568097553 hasConcept C2777303404 @default.
- W2568097553 hasConcept C33923547 @default.
- W2568097553 hasConcept C38652104 @default.
- W2568097553 hasConcept C41008148 @default.
- W2568097553 hasConcept C47446073 @default.
- W2568097553 hasConcept C50522688 @default.
- W2568097553 hasConcept C57869625 @default.
- W2568097553 hasConcept C59822182 @default.
- W2568097553 hasConcept C63840607 @default.
- W2568097553 hasConcept C67186912 @default.
- W2568097553 hasConcept C77088390 @default.
- W2568097553 hasConcept C86803240 @default.
- W2568097553 hasConcept C9936470 @default.
- W2568097553 hasConcept C99498987 @default.
- W2568097553 hasConceptScore W2568097553C102248274 @default.
- W2568097553 hasConceptScore W2568097553C105795698 @default.
- W2568097553 hasConceptScore W2568097553C111368507 @default.
- W2568097553 hasConceptScore W2568097553C112633086 @default.
- W2568097553 hasConceptScore W2568097553C11413529 @default.
- W2568097553 hasConceptScore W2568097553C115961682 @default.