Matches in SemOpenAlex for { <https://semopenalex.org/work/W256824573> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W256824573 startingPage "207" @default.
- W256824573 abstract "I. INTRODUCTION The empirical analysis of hedge fund returns has shown that the mean-variance approach is not adequate to study the risk and performance of these funds. Using monthly data, Fung and Hsieh (1997), Brooks and Kat (2001), Amenc et al. (2002, 2003) demonstrate that distributions of hedge funds returns have a negative skewness and an excess kurtosis. This leads to conclude that, for this type of fund, the challenge lies not only in the first two moments but also in higher moments. In this context, the selection of a family of distributions with sufficient flexibility to take account of the asymmetry and the kurtosis is necessary to study the behaviour of hedge funds returns. The Johnson distribution system (1949) satisfies this requirement. As mentioned in Passow (2004), this family of probability distributions can calibrate independently the four first moments, while disregarding potentially insignificant moments of order higher than 5. The introduction of Johnson distributions allows covering up to fourth-order moment patterns of (Log-) Normal, (2-sided) Student t and Weibull distributions. The family of Edgeworth expansions and twelve different types of Pearson distributions are also included. Note that these latter distributions include 1st and 2nd kind Beta and Gamma distributions. This is the reason why Johnson distributions can actually model the specific moment patterns. Since 2000, portfolio management theory has been based in particular on downside risk measures. In line with Basel II accords for banking regulations, these latter ones are related to determination of economical capital allocation (see Goovaerts et al., 2002). As illustrated also by Jarrow and Zhao (2006), there exist significant differences between mean-variance optimal portfolios and those based on lower partial moments, when asset returns are far from being Gaussian. The literature about financial risk and performance measurement has increased continuously. The first and basic performance measures for asset management are the Sharpe's ratio, the Treynor's ratio and the Jensen's Alpha. However, we must often deal with asymmetric return distributions having also fat tails. Consequently, it is necessary to introduce performance measures that are usually based on reward/risk ratios. Additionally, these risk measures must involve the whole return distribution, in particular the probabilities to get significant negative returns. For this purpose, downside risk measures have been introduced (see e.g. Pedersen and Satchell, 1998; Artzner et al., 1999; Szego, 2002). (1) Then, using the downside lower partial moment, Keating and Shadwick (2002) define a new performance measure, called the Omega measure. This performance measure is based on a gain-loss approach. It takes account of investor loss aversion, as in Tversky and Kahneman (1992). This performance measure is defined as the ratio of the expectation of gains above the threshold and the expectation of losses below the threshold. Farinelli and Tibiletti (2008) and Zakamouline and Koekebakker (2009) introduce generalized Sharpe ratios to evaluate portfolio performance. As proved by Pedersen and Satchell (1998, 2002), the Sortino ratio (which corresponds to Kappa (2)) is linked to utility function with lower risk aversion. Zakamouline (2010) generalizes this result by showing that Kappa measures correspond to performance measures associated to piecewise linear plus power utility functions. Kappa (n) measures have been used to examine performance of a large class of financial models, in particular to deal with hedge fund style or structured equity funds (see Bertand and Prigent, 2011). We examine how these measures behave according to the parameters of Johnson distributions. This paper is organized as follows. Section II provides general results about Kappa performance measures. Section III is a survey about Johnson distributions. We also develop an empirical illustration of such probability distributions and illustrate in particular the relationship between their four parameters and their four moments. …" @default.
- W256824573 created "2016-06-24" @default.
- W256824573 creator A5039430432 @default.
- W256824573 creator A5064958715 @default.
- W256824573 date "2011-06-22" @default.
- W256824573 modified "2023-09-26" @default.
- W256824573 title "Kappa Performance Measures with Johnson Distributions" @default.
- W256824573 cites W1998506499 @default.
- W256824573 cites W2010498146 @default.
- W256824573 cites W2019291268 @default.
- W256824573 cites W2041946752 @default.
- W256824573 cites W2043285584 @default.
- W256824573 cites W2057218189 @default.
- W256824573 cites W2077559812 @default.
- W256824573 cites W2092142093 @default.
- W256824573 cites W2118320195 @default.
- W256824573 cites W2131070718 @default.
- W256824573 cites W2137001314 @default.
- W256824573 cites W2137111967 @default.
- W256824573 cites W2143220546 @default.
- W256824573 cites W2147635035 @default.
- W256824573 cites W2332498091 @default.
- W256824573 cites W2991769409 @default.
- W256824573 cites W3124197366 @default.
- W256824573 cites W3124343864 @default.
- W256824573 cites W3125521165 @default.
- W256824573 hasPublicationYear "2011" @default.
- W256824573 type Work @default.
- W256824573 sameAs 256824573 @default.
- W256824573 citedByCount "3" @default.
- W256824573 countsByYear W2568245732014 @default.
- W256824573 countsByYear W2568245732015 @default.
- W256824573 crossrefType "journal-article" @default.
- W256824573 hasAuthorship W256824573A5039430432 @default.
- W256824573 hasAuthorship W256824573A5064958715 @default.
- W256824573 hasConcept C10138342 @default.
- W256824573 hasConcept C105795698 @default.
- W256824573 hasConcept C106159729 @default.
- W256824573 hasConcept C122342681 @default.
- W256824573 hasConcept C149782125 @default.
- W256824573 hasConcept C151730666 @default.
- W256824573 hasConcept C162324750 @default.
- W256824573 hasConcept C166963901 @default.
- W256824573 hasConcept C204434749 @default.
- W256824573 hasConcept C2779343474 @default.
- W256824573 hasConcept C2780821815 @default.
- W256824573 hasConcept C33923547 @default.
- W256824573 hasConcept C86803240 @default.
- W256824573 hasConceptScore W256824573C10138342 @default.
- W256824573 hasConceptScore W256824573C105795698 @default.
- W256824573 hasConceptScore W256824573C106159729 @default.
- W256824573 hasConceptScore W256824573C122342681 @default.
- W256824573 hasConceptScore W256824573C149782125 @default.
- W256824573 hasConceptScore W256824573C151730666 @default.
- W256824573 hasConceptScore W256824573C162324750 @default.
- W256824573 hasConceptScore W256824573C166963901 @default.
- W256824573 hasConceptScore W256824573C204434749 @default.
- W256824573 hasConceptScore W256824573C2779343474 @default.
- W256824573 hasConceptScore W256824573C2780821815 @default.
- W256824573 hasConceptScore W256824573C33923547 @default.
- W256824573 hasConceptScore W256824573C86803240 @default.
- W256824573 hasIssue "3" @default.
- W256824573 hasLocation W2568245731 @default.
- W256824573 hasOpenAccess W256824573 @default.
- W256824573 hasPrimaryLocation W2568245731 @default.
- W256824573 hasRelatedWork W1583332293 @default.
- W256824573 hasRelatedWork W1607258590 @default.
- W256824573 hasRelatedWork W1902381248 @default.
- W256824573 hasRelatedWork W1986220092 @default.
- W256824573 hasRelatedWork W2031108073 @default.
- W256824573 hasRelatedWork W2068689926 @default.
- W256824573 hasRelatedWork W2104741153 @default.
- W256824573 hasRelatedWork W2182767988 @default.
- W256824573 hasRelatedWork W2246572772 @default.
- W256824573 hasRelatedWork W2270465530 @default.
- W256824573 hasRelatedWork W2392921960 @default.
- W256824573 hasRelatedWork W3043156944 @default.
- W256824573 hasRelatedWork W3121281996 @default.
- W256824573 hasRelatedWork W3126087237 @default.
- W256824573 hasRelatedWork W3137520633 @default.
- W256824573 hasRelatedWork W3142438110 @default.
- W256824573 hasRelatedWork W632680268 @default.
- W256824573 hasRelatedWork W64470317 @default.
- W256824573 hasRelatedWork W2141483370 @default.
- W256824573 hasRelatedWork W3124015202 @default.
- W256824573 hasVolume "16" @default.
- W256824573 isParatext "false" @default.
- W256824573 isRetracted "false" @default.
- W256824573 magId "256824573" @default.
- W256824573 workType "article" @default.