Matches in SemOpenAlex for { <https://semopenalex.org/work/W2568757877> ?p ?o ?g. }
- W2568757877 abstract "Automatic fault diagnosis is an inseparable part of today's electromechanical systems. Advanced signal processing and machine learning techniques are required to address variabilities and uncertainties associated with the monitoring signals. In this paper, deep neural networks are employed to diagnose five classes of gearbox faults applied to three common monitoring signals, i.e. vibration, acoustic and torque. Discrete wavelet transform is used to provide the initial features as the inputs of the network. A test-rig based on a 250W three-phase squirrel cage induction machine shaft connected to a single stage helical gear is built for validation of the proposed method. The experimental results indicate accurate fault diagnosis in various conditions such as different modalities, signal variabilities, and load conditions." @default.
- W2568757877 created "2017-01-13" @default.
- W2568757877 creator A5014961146 @default.
- W2568757877 creator A5024660602 @default.
- W2568757877 creator A5040401289 @default.
- W2568757877 creator A5066940636 @default.
- W2568757877 date "2016-10-01" @default.
- W2568757877 modified "2023-10-16" @default.
- W2568757877 title "Gear fault diagnosis using discrete wavelet transform and deep neural networks" @default.
- W2568757877 cites W1897892887 @default.
- W2568757877 cites W1983638645 @default.
- W2568757877 cites W2002291869 @default.
- W2568757877 cites W2004039783 @default.
- W2568757877 cites W2005081781 @default.
- W2568757877 cites W2014526686 @default.
- W2568757877 cites W2031032942 @default.
- W2568757877 cites W2036443711 @default.
- W2568757877 cites W2058983449 @default.
- W2568757877 cites W2061698056 @default.
- W2568757877 cites W2065939417 @default.
- W2568757877 cites W2086649953 @default.
- W2568757877 cites W2094233035 @default.
- W2568757877 cites W2105619214 @default.
- W2568757877 cites W2114235274 @default.
- W2568757877 cites W2130995959 @default.
- W2568757877 cites W2139853183 @default.
- W2568757877 cites W2150341604 @default.
- W2568757877 cites W2158698691 @default.
- W2568757877 cites W2436151569 @default.
- W2568757877 doi "https://doi.org/10.1109/iecon.2016.7793549" @default.
- W2568757877 hasPublicationYear "2016" @default.
- W2568757877 type Work @default.
- W2568757877 sameAs 2568757877 @default.
- W2568757877 citedByCount "27" @default.
- W2568757877 countsByYear W25687578772017 @default.
- W2568757877 countsByYear W25687578772018 @default.
- W2568757877 countsByYear W25687578772019 @default.
- W2568757877 countsByYear W25687578772020 @default.
- W2568757877 countsByYear W25687578772021 @default.
- W2568757877 countsByYear W25687578772022 @default.
- W2568757877 countsByYear W25687578772023 @default.
- W2568757877 crossrefType "proceedings-article" @default.
- W2568757877 hasAuthorship W2568757877A5014961146 @default.
- W2568757877 hasAuthorship W2568757877A5024660602 @default.
- W2568757877 hasAuthorship W2568757877A5040401289 @default.
- W2568757877 hasAuthorship W2568757877A5066940636 @default.
- W2568757877 hasConcept C104267543 @default.
- W2568757877 hasConcept C121332964 @default.
- W2568757877 hasConcept C127313418 @default.
- W2568757877 hasConcept C127413603 @default.
- W2568757877 hasConcept C133731056 @default.
- W2568757877 hasConcept C144171764 @default.
- W2568757877 hasConcept C153180895 @default.
- W2568757877 hasConcept C154945302 @default.
- W2568757877 hasConcept C165205528 @default.
- W2568757877 hasConcept C175551986 @default.
- W2568757877 hasConcept C196216189 @default.
- W2568757877 hasConcept C198394728 @default.
- W2568757877 hasConcept C199360897 @default.
- W2568757877 hasConcept C24326235 @default.
- W2568757877 hasConcept C24890656 @default.
- W2568757877 hasConcept C2775924081 @default.
- W2568757877 hasConcept C2779843651 @default.
- W2568757877 hasConcept C41008148 @default.
- W2568757877 hasConcept C47432892 @default.
- W2568757877 hasConcept C47446073 @default.
- W2568757877 hasConcept C50644808 @default.
- W2568757877 hasConcept C84462506 @default.
- W2568757877 hasConcept C97355855 @default.
- W2568757877 hasConceptScore W2568757877C104267543 @default.
- W2568757877 hasConceptScore W2568757877C121332964 @default.
- W2568757877 hasConceptScore W2568757877C127313418 @default.
- W2568757877 hasConceptScore W2568757877C127413603 @default.
- W2568757877 hasConceptScore W2568757877C133731056 @default.
- W2568757877 hasConceptScore W2568757877C144171764 @default.
- W2568757877 hasConceptScore W2568757877C153180895 @default.
- W2568757877 hasConceptScore W2568757877C154945302 @default.
- W2568757877 hasConceptScore W2568757877C165205528 @default.
- W2568757877 hasConceptScore W2568757877C175551986 @default.
- W2568757877 hasConceptScore W2568757877C196216189 @default.
- W2568757877 hasConceptScore W2568757877C198394728 @default.
- W2568757877 hasConceptScore W2568757877C199360897 @default.
- W2568757877 hasConceptScore W2568757877C24326235 @default.
- W2568757877 hasConceptScore W2568757877C24890656 @default.
- W2568757877 hasConceptScore W2568757877C2775924081 @default.
- W2568757877 hasConceptScore W2568757877C2779843651 @default.
- W2568757877 hasConceptScore W2568757877C41008148 @default.
- W2568757877 hasConceptScore W2568757877C47432892 @default.
- W2568757877 hasConceptScore W2568757877C47446073 @default.
- W2568757877 hasConceptScore W2568757877C50644808 @default.
- W2568757877 hasConceptScore W2568757877C84462506 @default.
- W2568757877 hasConceptScore W2568757877C97355855 @default.
- W2568757877 hasLocation W25687578771 @default.
- W2568757877 hasLocation W25687578772 @default.
- W2568757877 hasOpenAccess W2568757877 @default.
- W2568757877 hasPrimaryLocation W25687578771 @default.
- W2568757877 hasRelatedWork W1577789985 @default.
- W2568757877 hasRelatedWork W1982375519 @default.
- W2568757877 hasRelatedWork W2034217055 @default.
- W2568757877 hasRelatedWork W2037328875 @default.