Matches in SemOpenAlex for { <https://semopenalex.org/work/W2569112930> ?p ?o ?g. }
- W2569112930 endingPage "352" @default.
- W2569112930 startingPage "342" @default.
- W2569112930 abstract "Multi-label feature selection involves the selection of relevant features from multi-labeled datasets, resulting in a potential improvement of multi-label learning accuracy. In conventional multi-label feature selection methods, the final feature subset is obtained by identifying the features of high relevance with low redundancy. Thus, accurate score evaluation is a key factor for obtaining an effective feature subset. However, conventional methods suffer from inaccurate conditional relevance evaluation when a large number of labels are involved. As a result, irrelevant features can be a member of the final feature subset, leading to low multi-label learning accuracy. In this paper, we propose a new multi-label feature selection method. Using a scalable relevance evaluation process that evaluates conditional relevance more accurately, the proposed method significantly improves multi-label learning accuracy compared with conventional multi-label feature selection methods." @default.
- W2569112930 created "2017-01-13" @default.
- W2569112930 creator A5070821846 @default.
- W2569112930 creator A5080934723 @default.
- W2569112930 date "2017-06-01" @default.
- W2569112930 modified "2023-10-14" @default.
- W2569112930 title "SCLS: Multi-label feature selection based on scalable criterion for large label set" @default.
- W2569112930 cites W1045349118 @default.
- W2569112930 cites W1513235864 @default.
- W2569112930 cites W1666447063 @default.
- W2569112930 cites W1834987204 @default.
- W2569112930 cites W1970696760 @default.
- W2569112930 cites W1972401983 @default.
- W2569112930 cites W1983507146 @default.
- W2569112930 cites W1990519701 @default.
- W2569112930 cites W2004992168 @default.
- W2569112930 cites W2015452969 @default.
- W2569112930 cites W2020826018 @default.
- W2569112930 cites W2042627188 @default.
- W2569112930 cites W2044170702 @default.
- W2569112930 cites W2052684427 @default.
- W2569112930 cites W2061554433 @default.
- W2569112930 cites W2063249739 @default.
- W2569112930 cites W2083488428 @default.
- W2569112930 cites W2086465730 @default.
- W2569112930 cites W2090630554 @default.
- W2569112930 cites W2093238926 @default.
- W2569112930 cites W2094244309 @default.
- W2569112930 cites W2107372416 @default.
- W2569112930 cites W2113890143 @default.
- W2569112930 cites W2114315281 @default.
- W2569112930 cites W2132139283 @default.
- W2569112930 cites W2138290126 @default.
- W2569112930 cites W2153758664 @default.
- W2569112930 cites W2154648857 @default.
- W2569112930 cites W2166840159 @default.
- W2569112930 cites W2191619632 @default.
- W2569112930 cites W2285696530 @default.
- W2569112930 cites W2331805790 @default.
- W2569112930 cites W2978725006 @default.
- W2569112930 cites W4252684946 @default.
- W2569112930 cites W636917482 @default.
- W2569112930 doi "https://doi.org/10.1016/j.patcog.2017.01.014" @default.
- W2569112930 hasPublicationYear "2017" @default.
- W2569112930 type Work @default.
- W2569112930 sameAs 2569112930 @default.
- W2569112930 citedByCount "93" @default.
- W2569112930 countsByYear W25691129302017 @default.
- W2569112930 countsByYear W25691129302018 @default.
- W2569112930 countsByYear W25691129302019 @default.
- W2569112930 countsByYear W25691129302020 @default.
- W2569112930 countsByYear W25691129302021 @default.
- W2569112930 countsByYear W25691129302022 @default.
- W2569112930 countsByYear W25691129302023 @default.
- W2569112930 crossrefType "journal-article" @default.
- W2569112930 hasAuthorship W2569112930A5070821846 @default.
- W2569112930 hasAuthorship W2569112930A5080934723 @default.
- W2569112930 hasConcept C111919701 @default.
- W2569112930 hasConcept C119857082 @default.
- W2569112930 hasConcept C124101348 @default.
- W2569112930 hasConcept C138885662 @default.
- W2569112930 hasConcept C148483581 @default.
- W2569112930 hasConcept C152124472 @default.
- W2569112930 hasConcept C153180895 @default.
- W2569112930 hasConcept C154945302 @default.
- W2569112930 hasConcept C158154518 @default.
- W2569112930 hasConcept C16811321 @default.
- W2569112930 hasConcept C177264268 @default.
- W2569112930 hasConcept C17744445 @default.
- W2569112930 hasConcept C199360897 @default.
- W2569112930 hasConcept C199539241 @default.
- W2569112930 hasConcept C2776401178 @default.
- W2569112930 hasConcept C2776482837 @default.
- W2569112930 hasConcept C41008148 @default.
- W2569112930 hasConcept C41895202 @default.
- W2569112930 hasConcept C48044578 @default.
- W2569112930 hasConcept C77088390 @default.
- W2569112930 hasConcept C81917197 @default.
- W2569112930 hasConceptScore W2569112930C111919701 @default.
- W2569112930 hasConceptScore W2569112930C119857082 @default.
- W2569112930 hasConceptScore W2569112930C124101348 @default.
- W2569112930 hasConceptScore W2569112930C138885662 @default.
- W2569112930 hasConceptScore W2569112930C148483581 @default.
- W2569112930 hasConceptScore W2569112930C152124472 @default.
- W2569112930 hasConceptScore W2569112930C153180895 @default.
- W2569112930 hasConceptScore W2569112930C154945302 @default.
- W2569112930 hasConceptScore W2569112930C158154518 @default.
- W2569112930 hasConceptScore W2569112930C16811321 @default.
- W2569112930 hasConceptScore W2569112930C177264268 @default.
- W2569112930 hasConceptScore W2569112930C17744445 @default.
- W2569112930 hasConceptScore W2569112930C199360897 @default.
- W2569112930 hasConceptScore W2569112930C199539241 @default.
- W2569112930 hasConceptScore W2569112930C2776401178 @default.
- W2569112930 hasConceptScore W2569112930C2776482837 @default.
- W2569112930 hasConceptScore W2569112930C41008148 @default.
- W2569112930 hasConceptScore W2569112930C41895202 @default.
- W2569112930 hasConceptScore W2569112930C48044578 @default.
- W2569112930 hasConceptScore W2569112930C77088390 @default.