Matches in SemOpenAlex for { <https://semopenalex.org/work/W2569188130> ?p ?o ?g. }
- W2569188130 abstract "Abstract The ErbB family of receptor tyrosine kinases comprises four members: epidermal growth factor receptor (EGFR/ErbB1), human EGFR 2 (HER2/ErbB2), ErbB3/HER3, and ErbB4/HER4. The first two members of this family, EGFR and HER2, have been implicated in tumorigenesis and cancer progression for several decades, and numerous drugs have now been approved that target these two proteins. Less attention, however, has been paid to the role of this family in mediating cancer cell survival and drug tolerance. To better understand the complex signal transduction network triggered by the ErbB receptor family, we built a computational model that quantitatively captures the dynamics of ErbB signaling. Sensitivity analysis identified ErbB3 as the most critical activator of phosphoinositide 3-kinase (PI3K) and Akt signaling, a key pro-survival pathway in cancer cells. Based on this insight, we designed a fully human monoclonal antibody, seribantumab (MM-121), that binds to ErbB3 and blocks signaling induced by the extracellular growth factors heregulin (HRG) and betacellulin (BTC). In this article, we present some of the key preclinical simulations and experimental data that formed the scientific foundation for three Phase 2 clinical trials in metastatic cancer. These trials were designed to determine if patients with advanced malignancies would derive benefit from the addition of seribantumab to standard-of-care drugs in platinum-resistant/refractory ovarian cancer, hormone receptor-positive HER2-negative breast cancer, and EGFR wild-type non-small cell lung cancer (NSCLC). From preclinical studies we learned that basal levels of ErbB3 phosphorylation correlate with response to seribantumab monotherapy in mouse xenograft models. As ErbB3 is rapidly dephosphorylated and hence difficult to measure clinically, we used the computational model to identify a set of five surrogate biomarkers that most directly affect the levels of p-ErbB3: HRG, BTC, EGFR, HER2, and ErbB3. Preclinically, the combined information from these five markers was sufficient to accurately predict which xenograft models would respond to seribantumab, and the single-most accurate predictor was HRG. When tested clinically in ovarian, breast and lung cancer, HRG mRNA expression was found to be both potentially prognostic of insensitivity to standard therapy and potentially predictive of benefit from the addition of seribantumab to standard of care therapy in all three indications. In addition, it was found that seribantumab was most active in cancers with low levels of HER2, consistent with preclinical predictions. Overall, our clinical studies and studies of others suggest that HRG expression defines a drug-tolerant cancer cell phenotype that persists in most solid tumor indications and may contribute to rapid clinical progression. To our knowledge, this is the first example of a drug designed and clinically tested using the principles of Systems Biology." @default.
- W2569188130 created "2017-01-13" @default.
- W2569188130 creator A5003940341 @default.
- W2569188130 creator A5007244834 @default.
- W2569188130 creator A5015194203 @default.
- W2569188130 creator A5019538504 @default.
- W2569188130 creator A5025211692 @default.
- W2569188130 creator A5027620289 @default.
- W2569188130 creator A5028983217 @default.
- W2569188130 creator A5033761148 @default.
- W2569188130 creator A5040316142 @default.
- W2569188130 creator A5043771907 @default.
- W2569188130 creator A5046123085 @default.
- W2569188130 creator A5047144866 @default.
- W2569188130 creator A5049754609 @default.
- W2569188130 creator A5050035884 @default.
- W2569188130 creator A5054208140 @default.
- W2569188130 creator A5059232093 @default.
- W2569188130 creator A5068446838 @default.
- W2569188130 creator A5072380469 @default.
- W2569188130 creator A5074616498 @default.
- W2569188130 creator A5079087635 @default.
- W2569188130 creator A5079320056 @default.
- W2569188130 creator A5081877228 @default.
- W2569188130 creator A5085495114 @default.
- W2569188130 creator A5087864188 @default.
- W2569188130 creator A5089088185 @default.
- W2569188130 creator A5089326182 @default.
- W2569188130 creator A5089508334 @default.
- W2569188130 date "2017-01-05" @default.
- W2569188130 modified "2023-10-17" @default.
- W2569188130 title "Systems biology driving drug development: from design to the clinical testing of the anti-ErbB3 antibody seribantumab (MM-121)" @default.
- W2569188130 cites W1500036797 @default.
- W2569188130 cites W1534849470 @default.
- W2569188130 cites W1687050403 @default.
- W2569188130 cites W1758361781 @default.
- W2569188130 cites W1838614196 @default.
- W2569188130 cites W1962305777 @default.
- W2569188130 cites W1963727587 @default.
- W2569188130 cites W1964321121 @default.
- W2569188130 cites W1978343870 @default.
- W2569188130 cites W1979056373 @default.
- W2569188130 cites W1979728832 @default.
- W2569188130 cites W1984469163 @default.
- W2569188130 cites W1994663540 @default.
- W2569188130 cites W1997006452 @default.
- W2569188130 cites W1997579117 @default.
- W2569188130 cites W1998232305 @default.
- W2569188130 cites W1998971866 @default.
- W2569188130 cites W2014881369 @default.
- W2569188130 cites W2017081079 @default.
- W2569188130 cites W2051867845 @default.
- W2569188130 cites W2054041826 @default.
- W2569188130 cites W2056967673 @default.
- W2569188130 cites W2058087601 @default.
- W2569188130 cites W2060737851 @default.
- W2569188130 cites W2073302110 @default.
- W2569188130 cites W2079083672 @default.
- W2569188130 cites W2082246284 @default.
- W2569188130 cites W2092646113 @default.
- W2569188130 cites W2096595244 @default.
- W2569188130 cites W2102928137 @default.
- W2569188130 cites W2106353254 @default.
- W2569188130 cites W2106642283 @default.
- W2569188130 cites W2120213327 @default.
- W2569188130 cites W2123183032 @default.
- W2569188130 cites W2129597559 @default.
- W2569188130 cites W2130240391 @default.
- W2569188130 cites W2133105825 @default.
- W2569188130 cites W2133572151 @default.
- W2569188130 cites W2134092834 @default.
- W2569188130 cites W2140484696 @default.
- W2569188130 cites W2147814423 @default.
- W2569188130 cites W2151464858 @default.
- W2569188130 cites W2151791302 @default.
- W2569188130 cites W2152454229 @default.
- W2569188130 cites W2160261947 @default.
- W2569188130 cites W2162525969 @default.
- W2569188130 cites W2163011383 @default.
- W2569188130 cites W2163482104 @default.
- W2569188130 cites W2234528305 @default.
- W2569188130 cites W2402692848 @default.
- W2569188130 cites W2419245586 @default.
- W2569188130 cites W2543492861 @default.
- W2569188130 cites W2597694248 @default.
- W2569188130 cites W2601086841 @default.
- W2569188130 cites W2605337228 @default.
- W2569188130 cites W2896806784 @default.
- W2569188130 doi "https://doi.org/10.1038/npjsba.2016.34" @default.
- W2569188130 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5516865" @default.
- W2569188130 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28725482" @default.
- W2569188130 hasPublicationYear "2017" @default.
- W2569188130 type Work @default.
- W2569188130 sameAs 2569188130 @default.
- W2569188130 citedByCount "56" @default.
- W2569188130 countsByYear W25691881302017 @default.
- W2569188130 countsByYear W25691881302018 @default.
- W2569188130 countsByYear W25691881302019 @default.
- W2569188130 countsByYear W25691881302020 @default.
- W2569188130 countsByYear W25691881302021 @default.