Matches in SemOpenAlex for { <https://semopenalex.org/work/W2569190022> ?p ?o ?g. }
- W2569190022 endingPage "129" @default.
- W2569190022 startingPage "115" @default.
- W2569190022 abstract "Viewers are highly accurate at recognizing sex and race from faces-though it remains unclear how this is achieved. Recognition of familiar faces is also highly accurate across a very large range of viewing conditions, despite the difficulty of the problem. Here we show that computation of sex and race can emerge incidentally from a system designed to compute identity. We emphasize the role of multiple encounters with a small number of people, which we take to underlie human face learning. We use highly variable everyday 'ambient' images of a few people to train a Linear Discriminant Analysis (LDA) model on identity. The resulting model has human-like properties, including a facility to cohere previously unseen ambient images of familiar (trained) people-an ability which breaks down for the faces of unknown (untrained) people. The first dimension created by the identity-trained LDA classifies both familiar and unfamiliar faces by sex, and the second dimension classifies faces by race-even though neither of these categories was explicitly coded at learning. By varying the numbers and types of face identities on which a further series of LDA models were trained, we show that this incidental learning of sex and race reflects covariation between these social categories and face identity, and that a remarkably small number of identities need be learnt before such incidental dimensions emerge. The task of learning to recognize familiar faces is sufficient to create certain salient social categories. (PsycINFO Database Record" @default.
- W2569190022 created "2017-01-13" @default.
- W2569190022 creator A5005342481 @default.
- W2569190022 creator A5020633598 @default.
- W2569190022 creator A5033521243 @default.
- W2569190022 creator A5074269898 @default.
- W2569190022 date "2017-03-01" @default.
- W2569190022 modified "2023-10-05" @default.
- W2569190022 title "Robust social categorization emerges from learning the identities of very few faces." @default.
- W2569190022 cites W114431013 @default.
- W2569190022 cites W1485541771 @default.
- W2569190022 cites W1485879728 @default.
- W2569190022 cites W1782590233 @default.
- W2569190022 cites W1838748418 @default.
- W2569190022 cites W1966231280 @default.
- W2569190022 cites W1973746047 @default.
- W2569190022 cites W1976984593 @default.
- W2569190022 cites W1980880567 @default.
- W2569190022 cites W1984849553 @default.
- W2569190022 cites W1990964553 @default.
- W2569190022 cites W1996537134 @default.
- W2569190022 cites W2006021933 @default.
- W2569190022 cites W2009948502 @default.
- W2569190022 cites W2013856522 @default.
- W2569190022 cites W2014877967 @default.
- W2569190022 cites W2016391807 @default.
- W2569190022 cites W2019111214 @default.
- W2569190022 cites W2020285660 @default.
- W2569190022 cites W2027324060 @default.
- W2569190022 cites W2029064186 @default.
- W2569190022 cites W2032506039 @default.
- W2569190022 cites W2034400362 @default.
- W2569190022 cites W2035377402 @default.
- W2569190022 cites W2037651268 @default.
- W2569190022 cites W2037784194 @default.
- W2569190022 cites W2039699568 @default.
- W2569190022 cites W2046951387 @default.
- W2569190022 cites W2053707690 @default.
- W2569190022 cites W2053989040 @default.
- W2569190022 cites W2058025014 @default.
- W2569190022 cites W2062790832 @default.
- W2569190022 cites W2082457352 @default.
- W2569190022 cites W2082788359 @default.
- W2569190022 cites W2086299392 @default.
- W2569190022 cites W2087681821 @default.
- W2569190022 cites W2088900896 @default.
- W2569190022 cites W2090684491 @default.
- W2569190022 cites W2093198591 @default.
- W2569190022 cites W2101790396 @default.
- W2569190022 cites W2104980219 @default.
- W2569190022 cites W2119486225 @default.
- W2569190022 cites W2120104568 @default.
- W2569190022 cites W2120822358 @default.
- W2569190022 cites W2121647436 @default.
- W2569190022 cites W2123742025 @default.
- W2569190022 cites W2124814107 @default.
- W2569190022 cites W2131273085 @default.
- W2569190022 cites W2131865553 @default.
- W2569190022 cites W2132254817 @default.
- W2569190022 cites W2132549764 @default.
- W2569190022 cites W2133284182 @default.
- W2569190022 cites W2135739137 @default.
- W2569190022 cites W2136296521 @default.
- W2569190022 cites W2140303783 @default.
- W2569190022 cites W2142187478 @default.
- W2569190022 cites W2143937080 @default.
- W2569190022 cites W2146439239 @default.
- W2569190022 cites W2147638989 @default.
- W2569190022 cites W2151134507 @default.
- W2569190022 cites W2163773424 @default.
- W2569190022 cites W2168505921 @default.
- W2569190022 cites W2169190432 @default.
- W2569190022 cites W2276579223 @default.
- W2569190022 cites W2419311807 @default.
- W2569190022 cites W2903806498 @default.
- W2569190022 cites W378128744 @default.
- W2569190022 cites W95274681 @default.
- W2569190022 doi "https://doi.org/10.1037/rev0000048" @default.
- W2569190022 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28054796" @default.
- W2569190022 hasPublicationYear "2017" @default.
- W2569190022 type Work @default.
- W2569190022 sameAs 2569190022 @default.
- W2569190022 citedByCount "45" @default.
- W2569190022 countsByYear W25691900222017 @default.
- W2569190022 countsByYear W25691900222018 @default.
- W2569190022 countsByYear W25691900222019 @default.
- W2569190022 countsByYear W25691900222020 @default.
- W2569190022 countsByYear W25691900222021 @default.
- W2569190022 countsByYear W25691900222022 @default.
- W2569190022 countsByYear W25691900222023 @default.
- W2569190022 crossrefType "journal-article" @default.
- W2569190022 hasAuthorship W2569190022A5005342481 @default.
- W2569190022 hasAuthorship W2569190022A5020633598 @default.
- W2569190022 hasAuthorship W2569190022A5033521243 @default.
- W2569190022 hasAuthorship W2569190022A5074269898 @default.
- W2569190022 hasBestOaLocation W25691900222 @default.
- W2569190022 hasConcept C103278499 @default.
- W2569190022 hasConcept C115961682 @default.