Matches in SemOpenAlex for { <https://semopenalex.org/work/W2569256304> ?p ?o ?g. }
- W2569256304 endingPage "637" @default.
- W2569256304 startingPage "621" @default.
- W2569256304 abstract "Accurate production performance evaluation and forecasting in shales during the early stages of development can play an important role in minimizing uncertainties associated with unconventional reservoirs. Given the limited reliability in forecasts from traditional decline models when applied to unconventional reservoirs, new tools to supplement the ones in use today are required to improve the accuracy of production forecasts. In this study, we present a method involving principal component analysis (PCA), which is a simple, non-parametric method of extracting relevant information from large data sets to perform production forecasting of liquid rich shale gas condensate reservoirs. We used a comprehensive compositional reservoir model to create several iterations of synthetic production histories from liquid rich shales (LRS) wells based on Monte Carlo simulation with predefined probability distributions. Cumulative gas, gas rate, and condensate-to-gas ratio (CGR) for the simulated cases were decomposed into principal component (PC) scores and coefficients were used to recreate the original data. The dataset was cross-validated to check its ability to predict the missing production data based on PC scores and coefficients of the limited production data. Principal component analysis was further applied to the field data from several wells from Eagle Ford shale. We re-created and cross-validated the field data by using limited PC which led to good matches of the original production data. Two to three PC's were required to recreate the initial data with reasonable accuracy depending on the quality of the input data. During the validation step, we observed that some of the wells exhibited significant error which could be attributed to significantly different production profiles of those wells compared to the other wells. For simulated data, four PC was enough to yield the prediction with average error of 0.16%, 0% and 0.77% respectively for gas rate, cumulative gas and CGR respectively. For field data, three PC yielded the best prediction with average error of 1.63% and 2.98% for gas rate and oil rate respectively. This work shows that multivariate statistics and data driven methods can be used as an important approach to complement existing tools like reservoir simulation and decline curve analysis to perform production data analysis. PCA can also be used and can generate accurate results relatively quickly. We recognize that even more rapid approximate methods will be required for routine analysis. Understanding the limitations of different approximate methods and application of methods to overcome these limitations in given circumstances should lead to optimal use of these methods." @default.
- W2569256304 created "2017-01-13" @default.
- W2569256304 creator A5026723848 @default.
- W2569256304 creator A5036943378 @default.
- W2569256304 creator A5053048863 @default.
- W2569256304 creator A5068418051 @default.
- W2569256304 date "2017-02-01" @default.
- W2569256304 modified "2023-10-12" @default.
- W2569256304 title "New forecasting method for liquid rich shale gas condensate reservoirs with data driven approach using principal component analysis" @default.
- W2569256304 cites W1943504883 @default.
- W2569256304 doi "https://doi.org/10.1016/j.jngse.2017.01.014" @default.
- W2569256304 hasPublicationYear "2017" @default.
- W2569256304 type Work @default.
- W2569256304 sameAs 2569256304 @default.
- W2569256304 citedByCount "27" @default.
- W2569256304 countsByYear W25692563042017 @default.
- W2569256304 countsByYear W25692563042018 @default.
- W2569256304 countsByYear W25692563042019 @default.
- W2569256304 countsByYear W25692563042020 @default.
- W2569256304 countsByYear W25692563042021 @default.
- W2569256304 countsByYear W25692563042022 @default.
- W2569256304 countsByYear W25692563042023 @default.
- W2569256304 crossrefType "journal-article" @default.
- W2569256304 hasAuthorship W2569256304A5026723848 @default.
- W2569256304 hasAuthorship W2569256304A5036943378 @default.
- W2569256304 hasAuthorship W2569256304A5053048863 @default.
- W2569256304 hasAuthorship W2569256304A5068418051 @default.
- W2569256304 hasConcept C105795698 @default.
- W2569256304 hasConcept C117251300 @default.
- W2569256304 hasConcept C121332964 @default.
- W2569256304 hasConcept C124101348 @default.
- W2569256304 hasConcept C127313418 @default.
- W2569256304 hasConcept C127413603 @default.
- W2569256304 hasConcept C139719470 @default.
- W2569256304 hasConcept C151730666 @default.
- W2569256304 hasConcept C153127940 @default.
- W2569256304 hasConcept C154945302 @default.
- W2569256304 hasConcept C162324750 @default.
- W2569256304 hasConcept C163258240 @default.
- W2569256304 hasConcept C168167062 @default.
- W2569256304 hasConcept C183250156 @default.
- W2569256304 hasConcept C19499675 @default.
- W2569256304 hasConcept C202444582 @default.
- W2569256304 hasConcept C27438332 @default.
- W2569256304 hasConcept C2777447996 @default.
- W2569256304 hasConcept C2778348673 @default.
- W2569256304 hasConcept C2778668878 @default.
- W2569256304 hasConcept C2779096232 @default.
- W2569256304 hasConcept C2993020645 @default.
- W2569256304 hasConcept C33923547 @default.
- W2569256304 hasConcept C41008148 @default.
- W2569256304 hasConcept C43214815 @default.
- W2569256304 hasConcept C548081761 @default.
- W2569256304 hasConcept C548895740 @default.
- W2569256304 hasConcept C62520636 @default.
- W2569256304 hasConcept C78762247 @default.
- W2569256304 hasConcept C9652623 @default.
- W2569256304 hasConcept C97355855 @default.
- W2569256304 hasConceptScore W2569256304C105795698 @default.
- W2569256304 hasConceptScore W2569256304C117251300 @default.
- W2569256304 hasConceptScore W2569256304C121332964 @default.
- W2569256304 hasConceptScore W2569256304C124101348 @default.
- W2569256304 hasConceptScore W2569256304C127313418 @default.
- W2569256304 hasConceptScore W2569256304C127413603 @default.
- W2569256304 hasConceptScore W2569256304C139719470 @default.
- W2569256304 hasConceptScore W2569256304C151730666 @default.
- W2569256304 hasConceptScore W2569256304C153127940 @default.
- W2569256304 hasConceptScore W2569256304C154945302 @default.
- W2569256304 hasConceptScore W2569256304C162324750 @default.
- W2569256304 hasConceptScore W2569256304C163258240 @default.
- W2569256304 hasConceptScore W2569256304C168167062 @default.
- W2569256304 hasConceptScore W2569256304C183250156 @default.
- W2569256304 hasConceptScore W2569256304C19499675 @default.
- W2569256304 hasConceptScore W2569256304C202444582 @default.
- W2569256304 hasConceptScore W2569256304C27438332 @default.
- W2569256304 hasConceptScore W2569256304C2777447996 @default.
- W2569256304 hasConceptScore W2569256304C2778348673 @default.
- W2569256304 hasConceptScore W2569256304C2778668878 @default.
- W2569256304 hasConceptScore W2569256304C2779096232 @default.
- W2569256304 hasConceptScore W2569256304C2993020645 @default.
- W2569256304 hasConceptScore W2569256304C33923547 @default.
- W2569256304 hasConceptScore W2569256304C41008148 @default.
- W2569256304 hasConceptScore W2569256304C43214815 @default.
- W2569256304 hasConceptScore W2569256304C548081761 @default.
- W2569256304 hasConceptScore W2569256304C548895740 @default.
- W2569256304 hasConceptScore W2569256304C62520636 @default.
- W2569256304 hasConceptScore W2569256304C78762247 @default.
- W2569256304 hasConceptScore W2569256304C9652623 @default.
- W2569256304 hasConceptScore W2569256304C97355855 @default.
- W2569256304 hasLocation W25692563041 @default.
- W2569256304 hasOpenAccess W2569256304 @default.
- W2569256304 hasPrimaryLocation W25692563041 @default.
- W2569256304 hasRelatedWork W2355422313 @default.
- W2569256304 hasRelatedWork W2586677911 @default.
- W2569256304 hasRelatedWork W2883693190 @default.
- W2569256304 hasRelatedWork W2937133796 @default.
- W2569256304 hasRelatedWork W2945926445 @default.
- W2569256304 hasRelatedWork W2984747519 @default.