Matches in SemOpenAlex for { <https://semopenalex.org/work/W2569435368> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2569435368 abstract "Scutari’s paper studies properties of the distribution of graphs ppGq. This is an interesting angle because it differs from many works that focus on distributions over parameter spaces for a given graph ppΘ | Gq. The paper’s investigation of ppGq centers around its implied covariance matrix “ CovpGq. The major theoretical results, as I see it, concern eigenvalues of as well as variance and covariance elements of in the maximum entropy case for DAGs (i.e., a uniform distribution over all DAGs). While these results are certainly very worth noting by their own intellectual merits, what practical difference they might make is unclear to me. Eigenvalues of might be hard to interpret in terms of their intuitive connections with underlying graph structures. The maximum entropy case is somehow limited as it is rarely the case for posterior graph distributions and is also often less preferred than sparser cases for prior graph distributions. More discussions on the implications of these theoretical results on real data analysis will be very helpful. The more general point raised by the paper is more interesting to me. It calls attention to deeper investigation on statistical properties of distributions of graphs ppGq. In the literature of my own research topic of Gaussian graphical models (Dempster 1972), existing studies usually only focus on a point estimation of G from ppGq – the mean or the mode of ppGq is often used to represent prior belief or to summarize posterior information. The paper’s framework extends this sort of simple summary to the covariance matrix of ppGq. It is then tempting to ask what will be gained from these extra efforts. Specific questions include how to construct a prior ppGq with a consideration beyond the implied mean or mode graphs, and how to put into a perspective that better illustrates graph structures than a point estimate alone. I attempt to explore these questions in this discussion from a more applied point of view than the paper. In addition, I have some doubts about the paper’s argument of using variability measures in choosing learning algorithms or hyperparameters. The context of my discussion is Gaussian graphical models under a fully Bayesian treatment (Jones et al. 2005). Generalizations of the following points might be made to other undirected graphs or even DAGs too." @default.
- W2569435368 created "2017-01-13" @default.
- W2569435368 creator A5030379103 @default.
- W2569435368 date "2013-09-01" @default.
- W2569435368 modified "2023-09-24" @default.
- W2569435368 title "Comment on Article by Scutari" @default.
- W2569435368 doi "https://doi.org/10.1214/13-ba840" @default.
- W2569435368 hasPublicationYear "2013" @default.
- W2569435368 type Work @default.
- W2569435368 sameAs 2569435368 @default.
- W2569435368 citedByCount "0" @default.
- W2569435368 crossrefType "journal-article" @default.
- W2569435368 hasAuthorship W2569435368A5030379103 @default.
- W2569435368 hasBestOaLocation W25694353681 @default.
- W2569435368 hasConcept C105795698 @default.
- W2569435368 hasConcept C106301342 @default.
- W2569435368 hasConcept C11413529 @default.
- W2569435368 hasConcept C118615104 @default.
- W2569435368 hasConcept C120665830 @default.
- W2569435368 hasConcept C121332964 @default.
- W2569435368 hasConcept C132525143 @default.
- W2569435368 hasConcept C155846161 @default.
- W2569435368 hasConcept C158693339 @default.
- W2569435368 hasConcept C163716315 @default.
- W2569435368 hasConcept C178650346 @default.
- W2569435368 hasConcept C180877172 @default.
- W2569435368 hasConcept C185142706 @default.
- W2569435368 hasConcept C192209626 @default.
- W2569435368 hasConcept C23123220 @default.
- W2569435368 hasConcept C28826006 @default.
- W2569435368 hasConcept C33923547 @default.
- W2569435368 hasConcept C41008148 @default.
- W2569435368 hasConcept C62520636 @default.
- W2569435368 hasConcept C88548561 @default.
- W2569435368 hasConcept C9679016 @default.
- W2569435368 hasConceptScore W2569435368C105795698 @default.
- W2569435368 hasConceptScore W2569435368C106301342 @default.
- W2569435368 hasConceptScore W2569435368C11413529 @default.
- W2569435368 hasConceptScore W2569435368C118615104 @default.
- W2569435368 hasConceptScore W2569435368C120665830 @default.
- W2569435368 hasConceptScore W2569435368C121332964 @default.
- W2569435368 hasConceptScore W2569435368C132525143 @default.
- W2569435368 hasConceptScore W2569435368C155846161 @default.
- W2569435368 hasConceptScore W2569435368C158693339 @default.
- W2569435368 hasConceptScore W2569435368C163716315 @default.
- W2569435368 hasConceptScore W2569435368C178650346 @default.
- W2569435368 hasConceptScore W2569435368C180877172 @default.
- W2569435368 hasConceptScore W2569435368C185142706 @default.
- W2569435368 hasConceptScore W2569435368C192209626 @default.
- W2569435368 hasConceptScore W2569435368C23123220 @default.
- W2569435368 hasConceptScore W2569435368C28826006 @default.
- W2569435368 hasConceptScore W2569435368C33923547 @default.
- W2569435368 hasConceptScore W2569435368C41008148 @default.
- W2569435368 hasConceptScore W2569435368C62520636 @default.
- W2569435368 hasConceptScore W2569435368C88548561 @default.
- W2569435368 hasConceptScore W2569435368C9679016 @default.
- W2569435368 hasLocation W25694353681 @default.
- W2569435368 hasOpenAccess W2569435368 @default.
- W2569435368 hasPrimaryLocation W25694353681 @default.
- W2569435368 hasRelatedWork W1522461882 @default.
- W2569435368 hasRelatedWork W1564451094 @default.
- W2569435368 hasRelatedWork W190568414 @default.
- W2569435368 hasRelatedWork W1923632975 @default.
- W2569435368 hasRelatedWork W1978075484 @default.
- W2569435368 hasRelatedWork W203291046 @default.
- W2569435368 hasRelatedWork W2058043899 @default.
- W2569435368 hasRelatedWork W2086999408 @default.
- W2569435368 hasRelatedWork W2125399603 @default.
- W2569435368 hasRelatedWork W2241021031 @default.
- W2569435368 hasRelatedWork W2295819417 @default.
- W2569435368 hasRelatedWork W2318839952 @default.
- W2569435368 hasRelatedWork W2323764368 @default.
- W2569435368 hasRelatedWork W2330252771 @default.
- W2569435368 hasRelatedWork W2473047712 @default.
- W2569435368 hasRelatedWork W2477032767 @default.
- W2569435368 hasRelatedWork W2913242707 @default.
- W2569435368 hasRelatedWork W3145265116 @default.
- W2569435368 hasRelatedWork W2400531394 @default.
- W2569435368 hasRelatedWork W2507863094 @default.
- W2569435368 isParatext "false" @default.
- W2569435368 isRetracted "false" @default.
- W2569435368 magId "2569435368" @default.
- W2569435368 workType "article" @default.