Matches in SemOpenAlex for { <https://semopenalex.org/work/W2569842982> ?p ?o ?g. }
- W2569842982 abstract "The regular intake of foods rich in bioactive compounds, such as polyphenols, has been linked to a risk reduction in cardiovascular diseases and certain types of cancer. Although their particular role on reducing risks factors requires a better understanding, in vitro and clinical studies show consistently their positive effects on human health. As a result, the use of commercial extracts rich in polyphenols from different sources (i.e. grapes, tea, apple, etc.) to formulate foods and beverages has become a trend in the sector. Nevertheless, the effectiveness of those extracts depends on preserving the stability, bioactivity and bioavailability of the active ingredients. A strategy to improve the stability and bioavailability of sensitive bioactive compounds is encapsulation. In this work, we investigated two encapsulation systems to entrap a procyanidin-rich extract: double (water-in-oil-in-water, W1/O/W2) emulsions and solid microcapsules (spray dried double emulsions). Premix membrane emulsification was the methodology applied to produce emulsions because it uses low shear stresses (what reduces the release of W1 droplets during emulsification), requires low energy input and shows a good control of droplet size distribution. We have focused on how the type and structure of the layer at the oil-water interface, made of whey proteins and polysaccharides, affects the physical and chemical stability of emulsions, and their capacity to retain procyanidins during processing and further storage. To understand the role of the interfacial layer, the properties of the several amphiphilic emulsifiers in aqueous solution and absorbed to plane surfaces, which mimic the O?W interfaces in real emulsions, have been determined. Premix ME enables to produce single and double emulsions with a droplet size close to the membrane pore size (10 µm). To stabilize emulsions, several hydrophilic emulsifiers were used to adsorb on the O/W interface: whey protein isolate (WPI), and WPI?Carboxymethyl cellulose (WPI?CMC), WPI?Gum Arabic (WPI?GA) and WPI?Chitosan (WPI?Chi) complexes. Adsorption measurements by means of Surface Plasmon Resonance (SPRi) showed that WPI?polysaccharides interfaces form thicker but less dense layers than only WPI. Furthermore, WPI?CMC and WPI?GA produced an interface with a negative surface charge, while WPI and WPI?Chi lead to an interfacial layer positively charged. Initially we assess that premix ME enabled to produce O/W emulsions stabilized by different interfacial structures made of WPI and CMC. WPI or WPI?CMC stabilized O/W emulsions were stable but showed large differences in lipid oxidation. While emulsions stabilized by WPI presented a relatively low rate of lipid oxidation, this was two orders of magnitude higher in emulsions stabilized with WPI?CMC complex. This large discrepancy was mainly explained by the differences in surface charge. The negatively charged lipid droplets of the emulsions stabilized with WPI-CMC would attract positively charged transition metals to their surfaces, promoting lipid oxidation. In the case of procyanidin-loaded W1/O/W2 emulsions stabilized by WPI?CMC, WPI?GA, or WPI?Chi complexes, the procyanidin encapsulation was at least 70% at the end of premix ME, regardless of the hydrophilic emulsifier used. Encapsulation of procyanidin decreased with each premix ME cycle, mainly linked to the escape of the inner W1 phase as a result of the breakup of W1/O droplets. Emulsion stability depended on the type of interfacial layer and the environmental conditions of the W2 phase (mainly pH). Different windows of pH, in which emulsions kept droplet size distribution stable, were identified for each WPI?polysaccharide complex. The release rate of procyanidins could be correlated to the interfacial thickness of the complex layer: thicker layers lowered the release rate. WPI?Chi complex lead to the lowest procyanidin release rate, due to its thick layer. To obtain solid microcapsules from W1/O/W2 emulsions, a wall material (maltodextrin) was added to the freshly produced double emulsions and, subsequently, the mixture was spray dried. All the W1/O/W2 emulsions investigated, that is, stabilized with WPI, WPI?CMC, WPI?GA or WPI?Chi, were able to produce procyanidin-loaded microcapsules after spray drying. Furthermore, they could all recover their W1/O/W2 emulsion structure upon rehydration. Microcapsules after spray drying and W1/O/W2 emulsions after rehydration showed profound differences in particle size distribution depending on the interfacial composition. Particularly, WPI?CMC complex was able to truly stabilize the W1/O droplets during the different stages of microcapsule production although it moderately retained the migration of procyanidins through the O?W2 interface. According to these results, small changes in hydrophilic emulsifiers have large influence on the solid and rehydrated microcapsules. For each type of encapsulation system (single emulsion, double emulsion and spray dried double emulsion) a tailor-made hydrophilic emulsifier is required to comply with the type of protection needed, the addenda used and the delivery conditions." @default.
- W2569842982 created "2017-01-13" @default.
- W2569842982 creator A5037635481 @default.
- W2569842982 date "2014-11-14" @default.
- W2569842982 modified "2023-09-24" @default.
- W2569842982 title "Encapsulation of procyanidins in double emulsions stabilized by protein–polysaccharide complexes" @default.
- W2569842982 cites W1254534305 @default.
- W2569842982 cites W1530156780 @default.
- W2569842982 cites W178917419 @default.
- W2569842982 cites W1965047821 @default.
- W2569842982 cites W1966445534 @default.
- W2569842982 cites W1967709468 @default.
- W2569842982 cites W1970055948 @default.
- W2569842982 cites W1972072758 @default.
- W2569842982 cites W1976918762 @default.
- W2569842982 cites W1977897646 @default.
- W2569842982 cites W1978150678 @default.
- W2569842982 cites W1979130454 @default.
- W2569842982 cites W1979940616 @default.
- W2569842982 cites W1982341399 @default.
- W2569842982 cites W1985686444 @default.
- W2569842982 cites W1987888553 @default.
- W2569842982 cites W1990374522 @default.
- W2569842982 cites W1990851997 @default.
- W2569842982 cites W1992308463 @default.
- W2569842982 cites W1999733948 @default.
- W2569842982 cites W2001962802 @default.
- W2569842982 cites W2002797577 @default.
- W2569842982 cites W2003635196 @default.
- W2569842982 cites W2006097398 @default.
- W2569842982 cites W2006399057 @default.
- W2569842982 cites W2007543270 @default.
- W2569842982 cites W2009368316 @default.
- W2569842982 cites W2010374630 @default.
- W2569842982 cites W2012077441 @default.
- W2569842982 cites W2012874220 @default.
- W2569842982 cites W2016062165 @default.
- W2569842982 cites W2018569753 @default.
- W2569842982 cites W2019654784 @default.
- W2569842982 cites W2019783005 @default.
- W2569842982 cites W2020591453 @default.
- W2569842982 cites W2025720591 @default.
- W2569842982 cites W2027162162 @default.
- W2569842982 cites W2031096293 @default.
- W2569842982 cites W2032540447 @default.
- W2569842982 cites W2032752519 @default.
- W2569842982 cites W2035576683 @default.
- W2569842982 cites W2038867080 @default.
- W2569842982 cites W2038964343 @default.
- W2569842982 cites W2042497288 @default.
- W2569842982 cites W2043275279 @default.
- W2569842982 cites W2051423397 @default.
- W2569842982 cites W2051722624 @default.
- W2569842982 cites W2052993679 @default.
- W2569842982 cites W2054080976 @default.
- W2569842982 cites W2054418665 @default.
- W2569842982 cites W2061749097 @default.
- W2569842982 cites W2063508230 @default.
- W2569842982 cites W2064384323 @default.
- W2569842982 cites W2064446119 @default.
- W2569842982 cites W2068003826 @default.
- W2569842982 cites W2072348737 @default.
- W2569842982 cites W2075845230 @default.
- W2569842982 cites W2077466040 @default.
- W2569842982 cites W2078800420 @default.
- W2569842982 cites W2079455158 @default.
- W2569842982 cites W2086718982 @default.
- W2569842982 cites W2088835339 @default.
- W2569842982 cites W2090697379 @default.
- W2569842982 cites W2091816201 @default.
- W2569842982 cites W2093161459 @default.
- W2569842982 cites W2093838168 @default.
- W2569842982 cites W2095109017 @default.
- W2569842982 cites W2097108531 @default.
- W2569842982 cites W2101139107 @default.
- W2569842982 cites W2105080324 @default.
- W2569842982 cites W2105155545 @default.
- W2569842982 cites W2110791850 @default.
- W2569842982 cites W2114004260 @default.
- W2569842982 cites W2120763229 @default.
- W2569842982 cites W2125108906 @default.
- W2569842982 cites W2126498530 @default.
- W2569842982 cites W2128503114 @default.
- W2569842982 cites W2128635872 @default.
- W2569842982 cites W2130829888 @default.
- W2569842982 cites W2137774749 @default.
- W2569842982 cites W2139842788 @default.
- W2569842982 cites W2149189556 @default.
- W2569842982 cites W2163122455 @default.
- W2569842982 cites W2165037895 @default.
- W2569842982 cites W2202688183 @default.
- W2569842982 cites W2308253145 @default.
- W2569842982 hasPublicationYear "2014" @default.
- W2569842982 type Work @default.
- W2569842982 sameAs 2569842982 @default.
- W2569842982 citedByCount "0" @default.
- W2569842982 crossrefType "journal-article" @default.
- W2569842982 hasAuthorship W2569842982A5037635481 @default.
- W2569842982 hasConcept C100817775 @default.
- W2569842982 hasConcept C127413603 @default.