Matches in SemOpenAlex for { <https://semopenalex.org/work/W2569969175> ?p ?o ?g. }
- W2569969175 abstract "Most of the modern motorized prostheses are controlled with the surface electromyography (sEMG) recorded on the residual muscles of amputated limbs. However, the residual muscles are usually limited, especially after above-elbow amputations, which would not provide enough sEMG for the control of prostheses with multiple degrees of freedom. Signal fusion is a possible approach to solve the problem of insufficient control commands, where some non-EMG signals are combined with sEMG signals to provide sufficient information for motion intension decoding. In this study, a motion-classification method that combines sEMG and electroencephalography (EEG) signals were proposed and investigated, in order to improve the control performance of upper-limb prostheses. Four transhumeral amputees without any form of neurological disease were recruited in the experiments. Five motion classes including hand-open, hand-close, wrist-pronation, wrist-supination, and no-movement were specified. During the motion performances, sEMG and EEG signals were simultaneously acquired from the skin surface and scalp of the amputees, respectively. The two types of signals were independently preprocessed and then combined as a parallel control input. Four time-domain features were extracted and fed into a classifier trained by the Linear Discriminant Analysis (LDA) algorithm for motion recognition. In addition, channel selections were performed by using the Sequential Forward Selection (SFS) algorithm to optimize the performance of the proposed method. The classification performance achieved by the fusion of sEMG and EEG signals was significantly better than that obtained by single signal source of either sEMG or EEG. An increment of more than 14% in classification accuracy was achieved when using a combination of 32-channel sEMG and 64-channel EEG. Furthermore, based on the SFS algorithm, two optimized electrode arrangements (10-channel sEMG + 10-channel EEG, 10-channel sEMG + 20-channel EEG) were obtained with classification accuracies of 84.2 and 87.0%, respectively, which were about 7.2 and 10% higher than the accuracy by using only 32-channel sEMG input. This study demonstrated the feasibility of fusing sEMG and EEG signals towards improving motion classification accuracy for above-elbow amputees, which might enhance the control performances of multifunctional myoelectric prostheses in clinical application. The study was approved by the ethics committee of Institutional Review Board of Shenzhen Institutes of Advanced Technology, and the reference number is SIAT-IRB-150515-H0077." @default.
- W2569969175 created "2017-01-13" @default.
- W2569969175 creator A5001085706 @default.
- W2569969175 creator A5018024166 @default.
- W2569969175 creator A5042592657 @default.
- W2569969175 creator A5073568638 @default.
- W2569969175 creator A5088961805 @default.
- W2569969175 creator A5090366405 @default.
- W2569969175 date "2017-01-07" @default.
- W2569969175 modified "2023-10-18" @default.
- W2569969175 title "A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees" @default.
- W2569969175 cites W1467326073 @default.
- W2569969175 cites W1794658923 @default.
- W2569969175 cites W1902817414 @default.
- W2569969175 cites W1963745554 @default.
- W2569969175 cites W1983961109 @default.
- W2569969175 cites W2013252819 @default.
- W2569969175 cites W2014958857 @default.
- W2569969175 cites W2017679845 @default.
- W2569969175 cites W2023869733 @default.
- W2569969175 cites W2031188528 @default.
- W2569969175 cites W2044628302 @default.
- W2569969175 cites W2066327120 @default.
- W2569969175 cites W2084271325 @default.
- W2569969175 cites W2087704839 @default.
- W2569969175 cites W2090449567 @default.
- W2569969175 cites W2091723494 @default.
- W2569969175 cites W2096553993 @default.
- W2569969175 cites W2097292795 @default.
- W2569969175 cites W2099278074 @default.
- W2569969175 cites W2100338757 @default.
- W2569969175 cites W2113998107 @default.
- W2569969175 cites W2120395111 @default.
- W2569969175 cites W2122612627 @default.
- W2569969175 cites W2123167643 @default.
- W2569969175 cites W2128495200 @default.
- W2569969175 cites W2130009391 @default.
- W2569969175 cites W2132240828 @default.
- W2569969175 cites W2137119997 @default.
- W2569969175 cites W2139235757 @default.
- W2569969175 cites W2145079789 @default.
- W2569969175 cites W2150825261 @default.
- W2569969175 cites W2154053567 @default.
- W2569969175 cites W2156947246 @default.
- W2569969175 cites W2165619603 @default.
- W2569969175 cites W2167221577 @default.
- W2569969175 cites W2171188488 @default.
- W2569969175 cites W2172156599 @default.
- W2569969175 cites W2295807745 @default.
- W2569969175 cites W2318852478 @default.
- W2569969175 cites W2325199320 @default.
- W2569969175 cites W3206356973 @default.
- W2569969175 cites W4367138792 @default.
- W2569969175 doi "https://doi.org/10.1186/s12984-016-0212-z" @default.
- W2569969175 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5219671" @default.
- W2569969175 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28061779" @default.
- W2569969175 hasPublicationYear "2017" @default.
- W2569969175 type Work @default.
- W2569969175 sameAs 2569969175 @default.
- W2569969175 citedByCount "138" @default.
- W2569969175 countsByYear W25699691752017 @default.
- W2569969175 countsByYear W25699691752018 @default.
- W2569969175 countsByYear W25699691752019 @default.
- W2569969175 countsByYear W25699691752020 @default.
- W2569969175 countsByYear W25699691752021 @default.
- W2569969175 countsByYear W25699691752022 @default.
- W2569969175 countsByYear W25699691752023 @default.
- W2569969175 crossrefType "journal-article" @default.
- W2569969175 hasAuthorship W2569969175A5001085706 @default.
- W2569969175 hasAuthorship W2569969175A5018024166 @default.
- W2569969175 hasAuthorship W2569969175A5042592657 @default.
- W2569969175 hasAuthorship W2569969175A5073568638 @default.
- W2569969175 hasAuthorship W2569969175A5088961805 @default.
- W2569969175 hasAuthorship W2569969175A5090366405 @default.
- W2569969175 hasBestOaLocation W25699691751 @default.
- W2569969175 hasConcept C126838900 @default.
- W2569969175 hasConcept C153180895 @default.
- W2569969175 hasConcept C154945302 @default.
- W2569969175 hasConcept C15744967 @default.
- W2569969175 hasConcept C169760540 @default.
- W2569969175 hasConcept C173201364 @default.
- W2569969175 hasConcept C199360897 @default.
- W2569969175 hasConcept C2777515770 @default.
- W2569969175 hasConcept C2778216619 @default.
- W2569969175 hasConcept C2779843651 @default.
- W2569969175 hasConcept C28490314 @default.
- W2569969175 hasConcept C31972630 @default.
- W2569969175 hasConcept C41008148 @default.
- W2569969175 hasConcept C522805319 @default.
- W2569969175 hasConcept C69738355 @default.
- W2569969175 hasConcept C71924100 @default.
- W2569969175 hasConcept C99508421 @default.
- W2569969175 hasConceptScore W2569969175C126838900 @default.
- W2569969175 hasConceptScore W2569969175C153180895 @default.
- W2569969175 hasConceptScore W2569969175C154945302 @default.
- W2569969175 hasConceptScore W2569969175C15744967 @default.
- W2569969175 hasConceptScore W2569969175C169760540 @default.
- W2569969175 hasConceptScore W2569969175C173201364 @default.
- W2569969175 hasConceptScore W2569969175C199360897 @default.
- W2569969175 hasConceptScore W2569969175C2777515770 @default.