Matches in SemOpenAlex for { <https://semopenalex.org/work/W2570048418> ?p ?o ?g. }
- W2570048418 endingPage "810" @default.
- W2570048418 startingPage "763" @default.
- W2570048418 abstract "We provide fast algorithms for overconstrained $ell_p$ regression and related problems: for an $ntimes d$ input matrix $A$ and vector $binmathbb{R}^n$, in $O(ndlog n)$ time we reduce the problem $min_{xinmathbb{R}^d} |Ax-b|_p$ to the same problem with input matrix $tilde A$ of dimension $s times d$ and corresponding $tilde b$ of dimension $stimes 1$. Here, $tilde A$ and $tilde b$ are a coreset for the problem, consisting of sampled and rescaled rows of $A$ and $b$; and $s$ is independent of $n$ and polynomial in $d$. Our results improve on the best previous algorithms when $ngg d$ for all $pin [1,infty)$ except $p=2$; in particular, they improve the $O(nd^{1.376+})$ running time of Sohler and Woodruff [Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, 2011, pp. 755--764] for $p=1$, which uses asymptotically fast matrix multiplication, and the $O(nd^5log n)$ time of Dasgupta et al. [SIAM J. Comput., 38 (2009), pp. 2060--2078] for general $p$, which uses ellipsoidal rounding. We also provide a suite of improved results for finding well-conditioned bases via ellipsoidal rounding, illustrating tradeoffs between running time and conditioning quality, including a one-pass conditioning algorithm for general $ell_p$ problems. To complement this theory, we provide a detailed empirical evaluation of implementations of our algorithms for $p=1$, comparing them with several related algorithms. Among other things, our empirical results clearly show that, in the asymptotic regime, the theory is a very good guide to the practical performance of these algorithms. Our algorithms use our faster constructions of well-conditioned bases for $ell_p$ spaces and, for $p=1$, a fast subspace embedding of independent interest that we call the Fast Cauchy transform: a distribution over matrices $Pi: mathbb{R}^nmapsto mathbb{R}^{O(dlog d)}$, found obliviously to $A$, that approximately preserves the $ell_1$ norms, that is, with large probability, simultaneously for all $x$, $|Ax|_1 approx |Pi Ax|_1$, with distortion $O(d^{2+eta} )$, for an arbitrarily small constant $eta>0$; and, moreover, $Pi A$ can be computed in $O(ndlog d)$ time. The techniques underlying our Fast Cauchy transform include Fast Johnson--Lindenstrauss transforms, low-coherence matrices, and rescaling by Cauchy random variables." @default.
- W2570048418 created "2017-01-13" @default.
- W2570048418 creator A5008945202 @default.
- W2570048418 creator A5024805876 @default.
- W2570048418 creator A5033006662 @default.
- W2570048418 creator A5047290568 @default.
- W2570048418 creator A5051863472 @default.
- W2570048418 creator A5062292480 @default.
- W2570048418 date "2016-01-01" @default.
- W2570048418 modified "2023-09-25" @default.
- W2570048418 title "The Fast Cauchy Transform and Faster Robust Linear Regression" @default.
- W2570048418 cites W1998269045 @default.
- W2570048418 cites W2001596810 @default.
- W2570048418 cites W2007399394 @default.
- W2570048418 cites W2008776938 @default.
- W2570048418 cites W2010371250 @default.
- W2570048418 cites W2017641901 @default.
- W2570048418 cites W2034124193 @default.
- W2570048418 cites W2045533739 @default.
- W2570048418 cites W2093813380 @default.
- W2570048418 cites W2099641086 @default.
- W2570048418 cites W2110273389 @default.
- W2570048418 cites W2125455772 @default.
- W2570048418 cites W2136235822 @default.
- W2570048418 cites W2141696759 @default.
- W2570048418 cites W2145607950 @default.
- W2570048418 cites W2963455674 @default.
- W2570048418 cites W2951454089 @default.
- W2570048418 doi "https://doi.org/10.1137/140963698" @default.
- W2570048418 hasPublicationYear "2016" @default.
- W2570048418 type Work @default.
- W2570048418 sameAs 2570048418 @default.
- W2570048418 citedByCount "26" @default.
- W2570048418 countsByYear W25700484182017 @default.
- W2570048418 countsByYear W25700484182018 @default.
- W2570048418 countsByYear W25700484182019 @default.
- W2570048418 countsByYear W25700484182020 @default.
- W2570048418 countsByYear W25700484182021 @default.
- W2570048418 countsByYear W25700484182022 @default.
- W2570048418 countsByYear W25700484182023 @default.
- W2570048418 crossrefType "journal-article" @default.
- W2570048418 hasAuthorship W2570048418A5008945202 @default.
- W2570048418 hasAuthorship W2570048418A5024805876 @default.
- W2570048418 hasAuthorship W2570048418A5033006662 @default.
- W2570048418 hasAuthorship W2570048418A5047290568 @default.
- W2570048418 hasAuthorship W2570048418A5051863472 @default.
- W2570048418 hasAuthorship W2570048418A5062292480 @default.
- W2570048418 hasBestOaLocation W25700484182 @default.
- W2570048418 hasConcept C106487976 @default.
- W2570048418 hasConcept C111919701 @default.
- W2570048418 hasConcept C11413529 @default.
- W2570048418 hasConcept C114614502 @default.
- W2570048418 hasConcept C118615104 @default.
- W2570048418 hasConcept C121332964 @default.
- W2570048418 hasConcept C134306372 @default.
- W2570048418 hasConcept C136625980 @default.
- W2570048418 hasConcept C159985019 @default.
- W2570048418 hasConcept C17349429 @default.
- W2570048418 hasConcept C192562407 @default.
- W2570048418 hasConcept C33676613 @default.
- W2570048418 hasConcept C33923547 @default.
- W2570048418 hasConcept C41008148 @default.
- W2570048418 hasConcept C49344536 @default.
- W2570048418 hasConcept C62520636 @default.
- W2570048418 hasConcept C84114770 @default.
- W2570048418 hasConcept C90119067 @default.
- W2570048418 hasConcept C94375191 @default.
- W2570048418 hasConceptScore W2570048418C106487976 @default.
- W2570048418 hasConceptScore W2570048418C111919701 @default.
- W2570048418 hasConceptScore W2570048418C11413529 @default.
- W2570048418 hasConceptScore W2570048418C114614502 @default.
- W2570048418 hasConceptScore W2570048418C118615104 @default.
- W2570048418 hasConceptScore W2570048418C121332964 @default.
- W2570048418 hasConceptScore W2570048418C134306372 @default.
- W2570048418 hasConceptScore W2570048418C136625980 @default.
- W2570048418 hasConceptScore W2570048418C159985019 @default.
- W2570048418 hasConceptScore W2570048418C17349429 @default.
- W2570048418 hasConceptScore W2570048418C192562407 @default.
- W2570048418 hasConceptScore W2570048418C33676613 @default.
- W2570048418 hasConceptScore W2570048418C33923547 @default.
- W2570048418 hasConceptScore W2570048418C41008148 @default.
- W2570048418 hasConceptScore W2570048418C49344536 @default.
- W2570048418 hasConceptScore W2570048418C62520636 @default.
- W2570048418 hasConceptScore W2570048418C84114770 @default.
- W2570048418 hasConceptScore W2570048418C90119067 @default.
- W2570048418 hasConceptScore W2570048418C94375191 @default.
- W2570048418 hasIssue "3" @default.
- W2570048418 hasLocation W25700484181 @default.
- W2570048418 hasLocation W25700484182 @default.
- W2570048418 hasLocation W25700484183 @default.
- W2570048418 hasOpenAccess W2570048418 @default.
- W2570048418 hasPrimaryLocation W25700484181 @default.
- W2570048418 hasRelatedWork W1013051127 @default.
- W2570048418 hasRelatedWork W1607154928 @default.
- W2570048418 hasRelatedWork W191585069 @default.
- W2570048418 hasRelatedWork W1978042415 @default.
- W2570048418 hasRelatedWork W2023314720 @default.
- W2570048418 hasRelatedWork W2087958846 @default.