Matches in SemOpenAlex for { <https://semopenalex.org/work/W2570299564> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2570299564 abstract "In typical problems involving pattern recognition, the challenge lies in selecting a good set of features and in devising a reliable algorithm to identify the class of learned patterns that most resembles the observed feature vector. Some times, however, the observed vector is not a single, but a mixture of multiple learned patterns and the challenge becomes to recognize all the present patterns and not just one of them. In order to do so, the patterns in the observed feature vector must first be separated -- an apparent paradox since the actual patterns forming the observed vector are hitherto unknown and should probably be identified first. At the same time, many techniques to separate mixture of signals have emerged from the literature in signal processing, but they require multiple and independent observations of the mixture of patterns, which is not usually possible or desirable in a pattern recognition setting. However, we believe that these two problems -- pattern separation and recognition -- are one and the same, and it can benefit from a hybrid technique derived from both contexts. So, in this research, we propose a technique based on Source Separation for recognizing patterns in mixtures of signals. From the signal processing perspective, our method can handle extremely under-determined cases, i.e., cases where one measurement is required despite the existence of multiple patterns mixed in the measurement -- a typical scenario from the pattern recognition perspective. We have run extensive tests to demonstrate the robustness and effectiveness of the method. We have also proposed frameworks for applications in various areas such as classification of chemical compounds using terahertz signatures; root phenotyping using terahertz imaging; recognition of muscle activity patterns using surface electromyographic signals (sEMG) for Robotic Assistive Technology; detection of vocal dysfunctions; and Hyperspectral Image analysis." @default.
- W2570299564 created "2017-01-13" @default.
- W2570299564 creator A5047263602 @default.
- W2570299564 date "2021-04-14" @default.
- W2570299564 modified "2023-09-25" @default.
- W2570299564 title "Pattern recognition through source signal separation" @default.
- W2570299564 doi "https://doi.org/10.32469/10355/57260" @default.
- W2570299564 hasPublicationYear "2021" @default.
- W2570299564 type Work @default.
- W2570299564 sameAs 2570299564 @default.
- W2570299564 citedByCount "0" @default.
- W2570299564 crossrefType "dissertation" @default.
- W2570299564 hasAuthorship W2570299564A5047263602 @default.
- W2570299564 hasBestOaLocation W25702995641 @default.
- W2570299564 hasConcept C104267543 @default.
- W2570299564 hasConcept C104317684 @default.
- W2570299564 hasConcept C124101348 @default.
- W2570299564 hasConcept C12713177 @default.
- W2570299564 hasConcept C138885662 @default.
- W2570299564 hasConcept C153180895 @default.
- W2570299564 hasConcept C154945302 @default.
- W2570299564 hasConcept C177264268 @default.
- W2570299564 hasConcept C185592680 @default.
- W2570299564 hasConcept C199360897 @default.
- W2570299564 hasConcept C2776401178 @default.
- W2570299564 hasConcept C2779843651 @default.
- W2570299564 hasConcept C41008148 @default.
- W2570299564 hasConcept C41895202 @default.
- W2570299564 hasConcept C55493867 @default.
- W2570299564 hasConcept C63479239 @default.
- W2570299564 hasConcept C83665646 @default.
- W2570299564 hasConcept C84462506 @default.
- W2570299564 hasConcept C9390403 @default.
- W2570299564 hasConceptScore W2570299564C104267543 @default.
- W2570299564 hasConceptScore W2570299564C104317684 @default.
- W2570299564 hasConceptScore W2570299564C124101348 @default.
- W2570299564 hasConceptScore W2570299564C12713177 @default.
- W2570299564 hasConceptScore W2570299564C138885662 @default.
- W2570299564 hasConceptScore W2570299564C153180895 @default.
- W2570299564 hasConceptScore W2570299564C154945302 @default.
- W2570299564 hasConceptScore W2570299564C177264268 @default.
- W2570299564 hasConceptScore W2570299564C185592680 @default.
- W2570299564 hasConceptScore W2570299564C199360897 @default.
- W2570299564 hasConceptScore W2570299564C2776401178 @default.
- W2570299564 hasConceptScore W2570299564C2779843651 @default.
- W2570299564 hasConceptScore W2570299564C41008148 @default.
- W2570299564 hasConceptScore W2570299564C41895202 @default.
- W2570299564 hasConceptScore W2570299564C55493867 @default.
- W2570299564 hasConceptScore W2570299564C63479239 @default.
- W2570299564 hasConceptScore W2570299564C83665646 @default.
- W2570299564 hasConceptScore W2570299564C84462506 @default.
- W2570299564 hasConceptScore W2570299564C9390403 @default.
- W2570299564 hasLocation W25702995641 @default.
- W2570299564 hasOpenAccess W2570299564 @default.
- W2570299564 hasPrimaryLocation W25702995641 @default.
- W2570299564 hasRelatedWork W10121358 @default.
- W2570299564 hasRelatedWork W11478586 @default.
- W2570299564 hasRelatedWork W11538522 @default.
- W2570299564 hasRelatedWork W12783365 @default.
- W2570299564 hasRelatedWork W14483911 @default.
- W2570299564 hasRelatedWork W2455099 @default.
- W2570299564 hasRelatedWork W5687595 @default.
- W2570299564 hasRelatedWork W8787759 @default.
- W2570299564 hasRelatedWork W9141304 @default.
- W2570299564 hasRelatedWork W9940185 @default.
- W2570299564 isParatext "false" @default.
- W2570299564 isRetracted "false" @default.
- W2570299564 magId "2570299564" @default.
- W2570299564 workType "dissertation" @default.