Matches in SemOpenAlex for { <https://semopenalex.org/work/W2570372101> ?p ?o ?g. }
- W2570372101 endingPage "238" @default.
- W2570372101 startingPage "218" @default.
- W2570372101 abstract "Real-time control systems rely on reliable estimates of states and parameters in order to provide accurate and safe control of electro-mechanical systems. The task of extracting state and parametric values from system’s partial measurements is referred to as state and parameter estimation. The main goal is minimizing the estimation error as well as maintaining robustness against the noise and modeling uncertainties. The development of estimation techniques spans over five centuries, and involves a large number of contributors from a variety of fields. This paper presents a tutorial on the main Gaussian filters that are used for state estimation of stochastic dynamic systems. The main concept of state estimation is firstly described based on the Bayesian paradigm and Gaussian assumption of the noise. The filters are then categorized into several groups based on their applications for state estimation. These groups involve linear optimal filtering, nonlinear filtering, adaptive filtering, and robust filtering. New advances and trends relevant to each technique are addressed and discussed in detail." @default.
- W2570372101 created "2017-01-13" @default.
- W2570372101 creator A5040972910 @default.
- W2570372101 creator A5064349407 @default.
- W2570372101 creator A5070963003 @default.
- W2570372101 date "2017-06-01" @default.
- W2570372101 modified "2023-10-16" @default.
- W2570372101 title "Gaussian filters for parameter and state estimation: A general review of theory and recent trends" @default.
- W2570372101 cites W1480774276 @default.
- W2570372101 cites W1521696905 @default.
- W2570372101 cites W1602452130 @default.
- W2570372101 cites W1646309082 @default.
- W2570372101 cites W1749494163 @default.
- W2570372101 cites W1965030114 @default.
- W2570372101 cites W1968315580 @default.
- W2570372101 cites W1970869692 @default.
- W2570372101 cites W1972967324 @default.
- W2570372101 cites W1977514790 @default.
- W2570372101 cites W1978294824 @default.
- W2570372101 cites W1982322007 @default.
- W2570372101 cites W1987986777 @default.
- W2570372101 cites W1988999630 @default.
- W2570372101 cites W1989401419 @default.
- W2570372101 cites W1994538941 @default.
- W2570372101 cites W1994597642 @default.
- W2570372101 cites W1996382496 @default.
- W2570372101 cites W2005596676 @default.
- W2570372101 cites W2016026577 @default.
- W2570372101 cites W2018295752 @default.
- W2570372101 cites W2020237705 @default.
- W2570372101 cites W2022023686 @default.
- W2570372101 cites W2029866570 @default.
- W2570372101 cites W2034896326 @default.
- W2570372101 cites W2035279803 @default.
- W2570372101 cites W2036323349 @default.
- W2570372101 cites W2043357888 @default.
- W2570372101 cites W2045894583 @default.
- W2570372101 cites W2051234657 @default.
- W2570372101 cites W2054091988 @default.
- W2570372101 cites W2062516164 @default.
- W2570372101 cites W2066058153 @default.
- W2570372101 cites W2066809249 @default.
- W2570372101 cites W2074232022 @default.
- W2570372101 cites W2076186907 @default.
- W2570372101 cites W2083402998 @default.
- W2570372101 cites W2083449474 @default.
- W2570372101 cites W2086492340 @default.
- W2570372101 cites W2088634472 @default.
- W2570372101 cites W2097009900 @default.
- W2570372101 cites W2097701432 @default.
- W2570372101 cites W2099371695 @default.
- W2570372101 cites W2099867508 @default.
- W2570372101 cites W2101552411 @default.
- W2570372101 cites W2105934661 @default.
- W2570372101 cites W2106003112 @default.
- W2570372101 cites W2107503352 @default.
- W2570372101 cites W2107856798 @default.
- W2570372101 cites W2114240282 @default.
- W2570372101 cites W2116266897 @default.
- W2570372101 cites W2117397690 @default.
- W2570372101 cites W2118983759 @default.
- W2570372101 cites W2119740494 @default.
- W2570372101 cites W2123487311 @default.
- W2570372101 cites W2126736494 @default.
- W2570372101 cites W2134034495 @default.
- W2570372101 cites W2139419665 @default.
- W2570372101 cites W2140060924 @default.
- W2570372101 cites W2140262981 @default.
- W2570372101 cites W2144349051 @default.
- W2570372101 cites W2145546780 @default.
- W2570372101 cites W2146332636 @default.
- W2570372101 cites W2149371065 @default.
- W2570372101 cites W2151876154 @default.
- W2570372101 cites W2152699771 @default.
- W2570372101 cites W2153978821 @default.
- W2570372101 cites W2154452253 @default.
- W2570372101 cites W2159065647 @default.
- W2570372101 cites W2160337655 @default.
- W2570372101 cites W2161177697 @default.
- W2570372101 cites W2162719021 @default.
- W2570372101 cites W2162854795 @default.
- W2570372101 cites W2165752801 @default.
- W2570372101 cites W2170081783 @default.
- W2570372101 cites W2178829616 @default.
- W2570372101 cites W2275344011 @default.
- W2570372101 cites W2290933750 @default.
- W2570372101 cites W2418406574 @default.
- W2570372101 cites W2485159264 @default.
- W2570372101 cites W297171375 @default.
- W2570372101 cites W4385689153 @default.
- W2570372101 cites W89016767 @default.
- W2570372101 doi "https://doi.org/10.1016/j.sigpro.2017.01.001" @default.
- W2570372101 hasPublicationYear "2017" @default.
- W2570372101 type Work @default.
- W2570372101 sameAs 2570372101 @default.
- W2570372101 citedByCount "134" @default.
- W2570372101 countsByYear W25703721012017 @default.
- W2570372101 countsByYear W25703721012018 @default.