Matches in SemOpenAlex for { <https://semopenalex.org/work/W2570691105> ?p ?o ?g. }
- W2570691105 endingPage "76" @default.
- W2570691105 startingPage "69" @default.
- W2570691105 abstract "Ascertain the distribution of materials and that of their degradation products in historical artifacts is crucial to understand their conservation status. Among the different analytical techniques that can be used, FT-IR imaging supplies information on the molecular composition of the material on a micrometric-scale in a nondestructive way (i.e. respecting the physical integrity of the material/object and without inducing visible damage to the object. This is possible by limiting the sampling to very small amounts.) (K.H.A. Janssens, R. van Grieken, Non-destructive microanalysis of cultural heritage materials, Elsevier, 2004). When thin sections of the material are not exploitable for transmission, and when ATR imaging mode is not suitable due to possible damages on the sample surface, FT-IR imaging is performed in reflection mode on thick polished, matrix embedded samples. Even if many efforts have been done in the optimization of the sample preparation, the material's surface quality is a critical issue that can hinder the achievement of good infrared images. Moreover, spectral artifacts due to volume and surface interactions can yield uncertain results in standard data treatment. In this paper we address a multivariate statistical analysis as an alternative and complementary approach to obtain high contrast FT-IR large images from hyperspectral data obtained by reflection μ-FTIR analysis. While applications of Principal Component Analysis (PCA) for chemical mapping is well established, no clustering unsupervised method applied to μ-FTIR data have been reported so far in the field of analytical chemistry for cultural heritage. In order to obtain certain chemical distribution of the stratigraphy materials, in this work the use of Hierarchical Cluster Analysis (HCA), validated with a supervised Principal Component based k-Nearest Neighbor (PCA-kNN) Analysis, has been successfully used for the re-construction of the μ-FTIR image, extracting useful information from the complex data set. A case study (a patina from the Arch of Septimius Severus in the Roman Forum) is presented to validate the model and to show new perspectives for FT-IR imaging in art conservation." @default.
- W2570691105 created "2017-01-13" @default.
- W2570691105 creator A5004149069 @default.
- W2570691105 creator A5012152895 @default.
- W2570691105 creator A5020160750 @default.
- W2570691105 creator A5029980202 @default.
- W2570691105 creator A5036677188 @default.
- W2570691105 creator A5040545300 @default.
- W2570691105 creator A5070774424 @default.
- W2570691105 creator A5070880523 @default.
- W2570691105 creator A5084800940 @default.
- W2570691105 date "2017-05-01" @default.
- W2570691105 modified "2023-09-23" @default.
- W2570691105 title "Chemometrics approach to FT-IR hyperspectral imaging analysis of degradation products in artwork cross-section" @default.
- W2570691105 cites W1975026136 @default.
- W2570691105 cites W1976383991 @default.
- W2570691105 cites W1977448398 @default.
- W2570691105 cites W1977583818 @default.
- W2570691105 cites W1982210717 @default.
- W2570691105 cites W1986165205 @default.
- W2570691105 cites W1987389037 @default.
- W2570691105 cites W1990242611 @default.
- W2570691105 cites W1990683708 @default.
- W2570691105 cites W1991714385 @default.
- W2570691105 cites W1997282205 @default.
- W2570691105 cites W1997307556 @default.
- W2570691105 cites W2002701671 @default.
- W2570691105 cites W2002937633 @default.
- W2570691105 cites W2004128332 @default.
- W2570691105 cites W2011170786 @default.
- W2570691105 cites W2018021432 @default.
- W2570691105 cites W2021359999 @default.
- W2570691105 cites W2022465338 @default.
- W2570691105 cites W2029382232 @default.
- W2570691105 cites W2035859178 @default.
- W2570691105 cites W2036097478 @default.
- W2570691105 cites W2039720919 @default.
- W2570691105 cites W2040269011 @default.
- W2570691105 cites W2043381570 @default.
- W2570691105 cites W2045965037 @default.
- W2570691105 cites W2050267046 @default.
- W2570691105 cites W2054038068 @default.
- W2570691105 cites W2055240604 @default.
- W2570691105 cites W2057975128 @default.
- W2570691105 cites W2059286207 @default.
- W2570691105 cites W2059593074 @default.
- W2570691105 cites W2061014251 @default.
- W2570691105 cites W2069510849 @default.
- W2570691105 cites W2071949631 @default.
- W2570691105 cites W2072176794 @default.
- W2570691105 cites W2074294631 @default.
- W2570691105 cites W2079427317 @default.
- W2570691105 cites W2082493476 @default.
- W2570691105 cites W2085946009 @default.
- W2570691105 cites W2087611266 @default.
- W2570691105 cites W2089295881 @default.
- W2570691105 cites W2111077247 @default.
- W2570691105 cites W2117335670 @default.
- W2570691105 cites W2166635154 @default.
- W2570691105 cites W2322011508 @default.
- W2570691105 cites W2763148304 @default.
- W2570691105 cites W4256454903 @default.
- W2570691105 cites W4292023264 @default.
- W2570691105 doi "https://doi.org/10.1016/j.microc.2017.01.007" @default.
- W2570691105 hasPublicationYear "2017" @default.
- W2570691105 type Work @default.
- W2570691105 sameAs 2570691105 @default.
- W2570691105 citedByCount "33" @default.
- W2570691105 countsByYear W25706911052017 @default.
- W2570691105 countsByYear W25706911052018 @default.
- W2570691105 countsByYear W25706911052019 @default.
- W2570691105 countsByYear W25706911052020 @default.
- W2570691105 countsByYear W25706911052021 @default.
- W2570691105 countsByYear W25706911052022 @default.
- W2570691105 countsByYear W25706911052023 @default.
- W2570691105 crossrefType "journal-article" @default.
- W2570691105 hasAuthorship W2570691105A5004149069 @default.
- W2570691105 hasAuthorship W2570691105A5012152895 @default.
- W2570691105 hasAuthorship W2570691105A5020160750 @default.
- W2570691105 hasAuthorship W2570691105A5029980202 @default.
- W2570691105 hasAuthorship W2570691105A5036677188 @default.
- W2570691105 hasAuthorship W2570691105A5040545300 @default.
- W2570691105 hasAuthorship W2570691105A5070774424 @default.
- W2570691105 hasAuthorship W2570691105A5070880523 @default.
- W2570691105 hasAuthorship W2570691105A5084800940 @default.
- W2570691105 hasBestOaLocation W25706911052 @default.
- W2570691105 hasConcept C119857082 @default.
- W2570691105 hasConcept C120665830 @default.
- W2570691105 hasConcept C121332964 @default.
- W2570691105 hasConcept C151304367 @default.
- W2570691105 hasConcept C154945302 @default.
- W2570691105 hasConcept C159078339 @default.
- W2570691105 hasConcept C160892712 @default.
- W2570691105 hasConcept C178790620 @default.
- W2570691105 hasConcept C185592680 @default.
- W2570691105 hasConcept C192562407 @default.
- W2570691105 hasConcept C198531522 @default.
- W2570691105 hasConcept C199289684 @default.