Matches in SemOpenAlex for { <https://semopenalex.org/work/W2570697512> ?p ?o ?g. }
- W2570697512 endingPage "2220" @default.
- W2570697512 startingPage "2211" @default.
- W2570697512 abstract "Estimating means of data points lying on the Riemannian manifold of symmetric positive-definite (SPD) matrices has proved of great utility in applications requiring interpolation, extrapolation, smoothing, signal detection, and classification. The power means of SPD matrices with exponent p in the interval [-1, 1] interpolate in between the Harmonic mean (p = -1) and the Arithmetic mean (p = 1), while the Geometric (Cartan/Karcher) mean, which is the one currently employed in most applications, corresponds to their limit evaluated at 0. In this paper, we treat the problem of estimating power means along the continuum p ϵ (-1, 1) given noisy observed measurement. We provide a general fixed point algorithm (MPM) and we show that its convergence rate for p = ±0.5 deteriorates very little with the number and dimension of points given as input. Along the whole continuum, MPM is also robust with respect to the dispersion of the points on the manifold (noise), much more than the gradient descent algorithm usually employed to estimate the geometric mean. Thus, MPM is an efficient algorithm for the whole family of power means, including the geometric mean, which by MPM can be approximated with a desired precision by interpolating two solutions obtained with a small ±p value. We also present an approximated version of the MPM algorithm with very low computational complexity for the special case p = ±½. Finally, we show the appeal of power means through the classification of brain-computer interface event-related potentials data." @default.
- W2570697512 created "2017-01-13" @default.
- W2570697512 creator A5057630826 @default.
- W2570697512 creator A5071024410 @default.
- W2570697512 creator A5076161191 @default.
- W2570697512 date "2017-05-01" @default.
- W2570697512 modified "2023-09-25" @default.
- W2570697512 title "Fixed Point Algorithms for Estimating Power Means of Positive Definite Matrices" @default.
- W2570697512 cites W1195028917 @default.
- W2570697512 cites W1504546788 @default.
- W2570697512 cites W1540403413 @default.
- W2570697512 cites W1653844963 @default.
- W2570697512 cites W1826072219 @default.
- W2570697512 cites W1953929691 @default.
- W2570697512 cites W1971392829 @default.
- W2570697512 cites W1974200742 @default.
- W2570697512 cites W1980819474 @default.
- W2570697512 cites W1986964250 @default.
- W2570697512 cites W1994048562 @default.
- W2570697512 cites W1994675040 @default.
- W2570697512 cites W2006134199 @default.
- W2570697512 cites W2006848113 @default.
- W2570697512 cites W2013011196 @default.
- W2570697512 cites W2019927695 @default.
- W2570697512 cites W2020054862 @default.
- W2570697512 cites W2032236594 @default.
- W2570697512 cites W2035715639 @default.
- W2570697512 cites W2056583019 @default.
- W2570697512 cites W2068787860 @default.
- W2570697512 cites W2076226407 @default.
- W2570697512 cites W2082465767 @default.
- W2570697512 cites W2085051698 @default.
- W2570697512 cites W2092133847 @default.
- W2570697512 cites W2096597330 @default.
- W2570697512 cites W2099515730 @default.
- W2570697512 cites W2105866209 @default.
- W2570697512 cites W2125391899 @default.
- W2570697512 cites W2181890334 @default.
- W2570697512 cites W2246632570 @default.
- W2570697512 cites W2338546148 @default.
- W2570697512 cites W2443602434 @default.
- W2570697512 cites W2519249881 @default.
- W2570697512 cites W2561489898 @default.
- W2570697512 cites W2962777248 @default.
- W2570697512 cites W2963532276 @default.
- W2570697512 cites W2963856272 @default.
- W2570697512 cites W3104827932 @default.
- W2570697512 cites W4206551434 @default.
- W2570697512 doi "https://doi.org/10.1109/tsp.2017.2649483" @default.
- W2570697512 hasPublicationYear "2017" @default.
- W2570697512 type Work @default.
- W2570697512 sameAs 2570697512 @default.
- W2570697512 citedByCount "28" @default.
- W2570697512 countsByYear W25706975122017 @default.
- W2570697512 countsByYear W25706975122018 @default.
- W2570697512 countsByYear W25706975122019 @default.
- W2570697512 countsByYear W25706975122020 @default.
- W2570697512 countsByYear W25706975122021 @default.
- W2570697512 countsByYear W25706975122022 @default.
- W2570697512 countsByYear W25706975122023 @default.
- W2570697512 crossrefType "journal-article" @default.
- W2570697512 hasAuthorship W2570697512A5057630826 @default.
- W2570697512 hasAuthorship W2570697512A5071024410 @default.
- W2570697512 hasAuthorship W2570697512A5076161191 @default.
- W2570697512 hasBestOaLocation W25706975122 @default.
- W2570697512 hasConcept C104114177 @default.
- W2570697512 hasConcept C105795698 @default.
- W2570697512 hasConcept C11413529 @default.
- W2570697512 hasConcept C121332964 @default.
- W2570697512 hasConcept C132459708 @default.
- W2570697512 hasConcept C134306372 @default.
- W2570697512 hasConcept C137800194 @default.
- W2570697512 hasConcept C154945302 @default.
- W2570697512 hasConcept C158693339 @default.
- W2570697512 hasConcept C203858083 @default.
- W2570697512 hasConcept C2524010 @default.
- W2570697512 hasConcept C28826006 @default.
- W2570697512 hasConcept C33923547 @default.
- W2570697512 hasConcept C3770464 @default.
- W2570697512 hasConcept C41008148 @default.
- W2570697512 hasConcept C49712288 @default.
- W2570697512 hasConcept C62520636 @default.
- W2570697512 hasConceptScore W2570697512C104114177 @default.
- W2570697512 hasConceptScore W2570697512C105795698 @default.
- W2570697512 hasConceptScore W2570697512C11413529 @default.
- W2570697512 hasConceptScore W2570697512C121332964 @default.
- W2570697512 hasConceptScore W2570697512C132459708 @default.
- W2570697512 hasConceptScore W2570697512C134306372 @default.
- W2570697512 hasConceptScore W2570697512C137800194 @default.
- W2570697512 hasConceptScore W2570697512C154945302 @default.
- W2570697512 hasConceptScore W2570697512C158693339 @default.
- W2570697512 hasConceptScore W2570697512C203858083 @default.
- W2570697512 hasConceptScore W2570697512C2524010 @default.
- W2570697512 hasConceptScore W2570697512C28826006 @default.
- W2570697512 hasConceptScore W2570697512C33923547 @default.
- W2570697512 hasConceptScore W2570697512C3770464 @default.
- W2570697512 hasConceptScore W2570697512C41008148 @default.
- W2570697512 hasConceptScore W2570697512C49712288 @default.