Matches in SemOpenAlex for { <https://semopenalex.org/work/W2570781790> ?p ?o ?g. }
- W2570781790 abstract "In this paper, we propose a probabilistic parsing model, which defines a proper conditional probability distribution over non-projective dependency trees for a given sentence, using neural representations as inputs. The neural network architecture is based on bi-directional LSTM-CNNs which benefits from both word- and character-level representations automatically, by using combination of bidirectional LSTM and CNN. On top of the neural network, we introduce a probabilistic structured layer, defining a conditional log-linear model over non-projective trees. We evaluate our model on 17 different datasets, across 14 different languages. By exploiting Kirchhoff's Matrix-Tree Theorem (Tutte, 1984), the partition functions and marginals can be computed efficiently, leading to a straight-forward end-to-end model training procedure via back-propagation. Our parser achieves state-of-the-art parsing performance on nine datasets." @default.
- W2570781790 created "2017-01-13" @default.
- W2570781790 creator A5060225743 @default.
- W2570781790 creator A5078672329 @default.
- W2570781790 date "2017-01-04" @default.
- W2570781790 modified "2023-09-27" @default.
- W2570781790 title "Neural Probabilistic Model for Non-projective MST Parsing" @default.
- W2570781790 cites W1508977358 @default.
- W2570781790 cites W1522301498 @default.
- W2570781790 cites W1523296404 @default.
- W2570781790 cites W1541975828 @default.
- W2570781790 cites W1574662932 @default.
- W2570781790 cites W1576002161 @default.
- W2570781790 cites W1632114991 @default.
- W2570781790 cites W1902237438 @default.
- W2570781790 cites W1903393809 @default.
- W2570781790 cites W1970849810 @default.
- W2570781790 cites W2027979924 @default.
- W2570781790 cites W2064675550 @default.
- W2570781790 cites W2095690342 @default.
- W2570781790 cites W2095705004 @default.
- W2570781790 cites W2101609803 @default.
- W2570781790 cites W2111023066 @default.
- W2570781790 cites W2114609248 @default.
- W2570781790 cites W2116410915 @default.
- W2570781790 cites W2122922578 @default.
- W2570781790 cites W2139885235 @default.
- W2570781790 cites W2147022480 @default.
- W2570781790 cites W2147568880 @default.
- W2570781790 cites W2154862802 @default.
- W2570781790 cites W2158899491 @default.
- W2570781790 cites W2176412452 @default.
- W2570781790 cites W2250628419 @default.
- W2570781790 cites W2250861254 @default.
- W2570781790 cites W2251035762 @default.
- W2570781790 cites W2251837567 @default.
- W2570781790 cites W2252140389 @default.
- W2570781790 cites W2252840007 @default.
- W2570781790 cites W2294521951 @default.
- W2570781790 cites W2296194829 @default.
- W2570781790 cites W2311132329 @default.
- W2570781790 cites W2413965833 @default.
- W2570781790 cites W2425667873 @default.
- W2570781790 cites W2512597464 @default.
- W2570781790 cites W2518668950 @default.
- W2570781790 cites W2523888555 @default.
- W2570781790 cites W2526170246 @default.
- W2570781790 cites W2552110825 @default.
- W2570781790 cites W2949777170 @default.
- W2570781790 cites W2949952998 @default.
- W2570781790 cites W2950886545 @default.
- W2570781790 cites W2951037516 @default.
- W2570781790 cites W2951336364 @default.
- W2570781790 cites W2962902328 @default.
- W2570781790 cites W2963254740 @default.
- W2570781790 cites W2963266340 @default.
- W2570781790 cites W2963625095 @default.
- W2570781790 cites W2964199361 @default.
- W2570781790 cites W581956982 @default.
- W2570781790 cites W6908809 @default.
- W2570781790 hasPublicationYear "2017" @default.
- W2570781790 type Work @default.
- W2570781790 sameAs 2570781790 @default.
- W2570781790 citedByCount "9" @default.
- W2570781790 countsByYear W25707817902017 @default.
- W2570781790 countsByYear W25707817902018 @default.
- W2570781790 crossrefType "posted-content" @default.
- W2570781790 hasAuthorship W2570781790A5060225743 @default.
- W2570781790 hasAuthorship W2570781790A5078672329 @default.
- W2570781790 hasConcept C11413529 @default.
- W2570781790 hasConcept C154945302 @default.
- W2570781790 hasConcept C162324750 @default.
- W2570781790 hasConcept C164883195 @default.
- W2570781790 hasConcept C186644900 @default.
- W2570781790 hasConcept C187736073 @default.
- W2570781790 hasConcept C197352929 @default.
- W2570781790 hasConcept C204321447 @default.
- W2570781790 hasConcept C2777530160 @default.
- W2570781790 hasConcept C2780451532 @default.
- W2570781790 hasConcept C28006648 @default.
- W2570781790 hasConcept C41008148 @default.
- W2570781790 hasConcept C49937458 @default.
- W2570781790 hasConcept C50644808 @default.
- W2570781790 hasConcept C80444323 @default.
- W2570781790 hasConceptScore W2570781790C11413529 @default.
- W2570781790 hasConceptScore W2570781790C154945302 @default.
- W2570781790 hasConceptScore W2570781790C162324750 @default.
- W2570781790 hasConceptScore W2570781790C164883195 @default.
- W2570781790 hasConceptScore W2570781790C186644900 @default.
- W2570781790 hasConceptScore W2570781790C187736073 @default.
- W2570781790 hasConceptScore W2570781790C197352929 @default.
- W2570781790 hasConceptScore W2570781790C204321447 @default.
- W2570781790 hasConceptScore W2570781790C2777530160 @default.
- W2570781790 hasConceptScore W2570781790C2780451532 @default.
- W2570781790 hasConceptScore W2570781790C28006648 @default.
- W2570781790 hasConceptScore W2570781790C41008148 @default.
- W2570781790 hasConceptScore W2570781790C49937458 @default.
- W2570781790 hasConceptScore W2570781790C50644808 @default.
- W2570781790 hasConceptScore W2570781790C80444323 @default.
- W2570781790 hasLocation W25707817901 @default.