Matches in SemOpenAlex for { <https://semopenalex.org/work/W2570881823> ?p ?o ?g. }
- W2570881823 endingPage "425" @default.
- W2570881823 startingPage "407" @default.
- W2570881823 abstract "China’s rapid economic development greatly affected not only the global economy but also the entire environment of the Earth. Forecasting China’s economic growth has become a popular and essential issue but at present, such forecasts are nearly all conducted at the national scale. In this study, we use nighttime light images and the gridded Landscan population dataset to disaggregate gross domestic product (GDP) reported at the province scale on a per pixel level for 2000–2013. Using the disaggregated GDP time series data and the statistical tool of Holt–Winters smoothing, we predict changes of GDP at each 1 km × 1 km grid area from 2014 to 2020 and then aggregate the pixel-level GDP to forecast economic growth in 23 major urban agglomerations of China. We elaborate and demonstrate that lit population (brightness of nighttime lights × population) is a better indicator than brightness of nighttime lights to estimate and disaggregate GDP. We also show that our forecast GDP has high agreement with the Nation..." @default.
- W2570881823 created "2017-01-13" @default.
- W2570881823 creator A5006371274 @default.
- W2570881823 creator A5047406576 @default.
- W2570881823 creator A5060002817 @default.
- W2570881823 creator A5073187748 @default.
- W2570881823 creator A5083950779 @default.
- W2570881823 date "2017-01-05" @default.
- W2570881823 modified "2023-09-27" @default.
- W2570881823 title "Forecasting China’s GDP at the pixel level using nighttime lights time series and population images" @default.
- W2570881823 cites W1523531111 @default.
- W2570881823 cites W1801909066 @default.
- W2570881823 cites W1835863657 @default.
- W2570881823 cites W1979361209 @default.
- W2570881823 cites W1990446046 @default.
- W2570881823 cites W1991871367 @default.
- W2570881823 cites W2000362707 @default.
- W2570881823 cites W2002155058 @default.
- W2570881823 cites W2002255637 @default.
- W2570881823 cites W2008905291 @default.
- W2570881823 cites W2009117963 @default.
- W2570881823 cites W2010989045 @default.
- W2570881823 cites W2012845942 @default.
- W2570881823 cites W2013346883 @default.
- W2570881823 cites W2017193277 @default.
- W2570881823 cites W2017708700 @default.
- W2570881823 cites W2023693832 @default.
- W2570881823 cites W2024918802 @default.
- W2570881823 cites W2028740844 @default.
- W2570881823 cites W2044725539 @default.
- W2570881823 cites W2057864962 @default.
- W2570881823 cites W2060165102 @default.
- W2570881823 cites W2069624290 @default.
- W2570881823 cites W2074485158 @default.
- W2570881823 cites W2085866051 @default.
- W2570881823 cites W2086610502 @default.
- W2570881823 cites W2089134580 @default.
- W2570881823 cites W2089369057 @default.
- W2570881823 cites W2092909501 @default.
- W2570881823 cites W2111195126 @default.
- W2570881823 cites W2119166951 @default.
- W2570881823 cites W2131909014 @default.
- W2570881823 cites W2146585403 @default.
- W2570881823 cites W2156789004 @default.
- W2570881823 cites W2163082744 @default.
- W2570881823 cites W2195033177 @default.
- W2570881823 cites W2230486561 @default.
- W2570881823 cites W2254584107 @default.
- W2570881823 cites W2285678194 @default.
- W2570881823 cites W2302172712 @default.
- W2570881823 cites W2328057635 @default.
- W2570881823 cites W2551066006 @default.
- W2570881823 cites W3122021387 @default.
- W2570881823 cites W4251849772 @default.
- W2570881823 doi "https://doi.org/10.1080/15481603.2016.1276705" @default.
- W2570881823 hasPublicationYear "2017" @default.
- W2570881823 type Work @default.
- W2570881823 sameAs 2570881823 @default.
- W2570881823 citedByCount "58" @default.
- W2570881823 countsByYear W25708818232017 @default.
- W2570881823 countsByYear W25708818232018 @default.
- W2570881823 countsByYear W25708818232019 @default.
- W2570881823 countsByYear W25708818232020 @default.
- W2570881823 countsByYear W25708818232021 @default.
- W2570881823 countsByYear W25708818232022 @default.
- W2570881823 countsByYear W25708818232023 @default.
- W2570881823 crossrefType "journal-article" @default.
- W2570881823 hasAuthorship W2570881823A5006371274 @default.
- W2570881823 hasAuthorship W2570881823A5047406576 @default.
- W2570881823 hasAuthorship W2570881823A5060002817 @default.
- W2570881823 hasAuthorship W2570881823A5073187748 @default.
- W2570881823 hasAuthorship W2570881823A5083950779 @default.
- W2570881823 hasConcept C105795698 @default.
- W2570881823 hasConcept C127313418 @default.
- W2570881823 hasConcept C143724316 @default.
- W2570881823 hasConcept C144024400 @default.
- W2570881823 hasConcept C149923435 @default.
- W2570881823 hasConcept C151406439 @default.
- W2570881823 hasConcept C151730666 @default.
- W2570881823 hasConcept C153294291 @default.
- W2570881823 hasConcept C154945302 @default.
- W2570881823 hasConcept C160633673 @default.
- W2570881823 hasConcept C166957645 @default.
- W2570881823 hasConcept C191935318 @default.
- W2570881823 hasConcept C205649164 @default.
- W2570881823 hasConcept C2908647359 @default.
- W2570881823 hasConcept C33923547 @default.
- W2570881823 hasConcept C39432304 @default.
- W2570881823 hasConcept C41008148 @default.
- W2570881823 hasConcept C49204034 @default.
- W2570881823 hasConcept C58640448 @default.
- W2570881823 hasConcept C62649853 @default.
- W2570881823 hasConceptScore W2570881823C105795698 @default.
- W2570881823 hasConceptScore W2570881823C127313418 @default.
- W2570881823 hasConceptScore W2570881823C143724316 @default.
- W2570881823 hasConceptScore W2570881823C144024400 @default.
- W2570881823 hasConceptScore W2570881823C149923435 @default.
- W2570881823 hasConceptScore W2570881823C151406439 @default.