Matches in SemOpenAlex for { <https://semopenalex.org/work/W2570973170> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2570973170 endingPage "552" @default.
- W2570973170 startingPage "546" @default.
- W2570973170 abstract "An initial clinical assessment is described of a new, commercially available, computer-aided diagnosis (CAD) system using artificial intelligence (AI) for thyroid ultrasound, and its performance is evaluated in the diagnosis of malignant thyroid nodules and categorization of nodule characteristics.Patients with thyroid nodules with decisive diagnosis, whether benign or malignant, were consecutively enrolled from November 2015 to February 2016. An experienced radiologist reviewed the ultrasound image characteristics of the thyroid nodules, while another radiologist assessed the same thyroid nodules using the CAD system, providing ultrasound characteristics and a diagnosis of whether nodules were benign or malignant. The diagnostic performance and agreement of US characteristics between the experienced radiologist and the CAD system were compared.In total, 102 thyroid nodules from 89 patients were included; 59 (57.8%) were benign and 43 (42.2%) were malignant. The CAD system showed a similar sensitivity as the experienced radiologist (90.7% vs. 88.4%, p > 0.99), but a lower specificity and a lower area under the receiver operating characteristic (AUROC) curve (specificity: 74.6% vs. 94.9%, p = 0.002; AUROC: 0.83 vs. 0.92, p = 0.021). Classifications of the ultrasound characteristics (composition, orientation, echogenicity, and spongiform) between radiologist and CAD system were in substantial agreement (κ = 0.659, 0.740, 0.733, and 0.658, respectively), while the margin showed a fair agreement (κ = 0.239).The sensitivity of the CAD system using AI for malignant thyroid nodules was as good as that of the experienced radiologist, while specificity and accuracy were lower than those of the experienced radiologist. The CAD system showed an acceptable agreement with the experienced radiologist for characterization of thyroid nodules." @default.
- W2570973170 created "2017-01-13" @default.
- W2570973170 creator A5006709991 @default.
- W2570973170 creator A5040588122 @default.
- W2570973170 creator A5043646061 @default.
- W2570973170 creator A5046281685 @default.
- W2570973170 creator A5047156899 @default.
- W2570973170 creator A5052185015 @default.
- W2570973170 creator A5070974897 @default.
- W2570973170 date "2017-04-01" @default.
- W2570973170 modified "2023-10-18" @default.
- W2570973170 title "A Computer-Aided Diagnosis System Using Artificial Intelligence for the Diagnosis and Characterization of Thyroid Nodules on Ultrasound: Initial Clinical Assessment" @default.
- W2570973170 cites W1460543377 @default.
- W2570973170 cites W1968865204 @default.
- W2570973170 cites W1982712162 @default.
- W2570973170 cites W2026830418 @default.
- W2570973170 cites W2032162541 @default.
- W2570973170 cites W2043257938 @default.
- W2570973170 cites W2045658574 @default.
- W2570973170 cites W2061295593 @default.
- W2570973170 cites W2108736975 @default.
- W2570973170 cites W2111175394 @default.
- W2570973170 cites W2114564815 @default.
- W2570973170 cites W2129866184 @default.
- W2570973170 cites W2132009438 @default.
- W2570973170 cites W2145150141 @default.
- W2570973170 cites W2164777277 @default.
- W2570973170 cites W2168383896 @default.
- W2570973170 cites W2224991823 @default.
- W2570973170 cites W2294839422 @default.
- W2570973170 cites W2328176404 @default.
- W2570973170 cites W2352423269 @default.
- W2570973170 cites W3020992444 @default.
- W2570973170 cites W904538675 @default.
- W2570973170 doi "https://doi.org/10.1089/thy.2016.0372" @default.
- W2570973170 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28071987" @default.
- W2570973170 hasPublicationYear "2017" @default.
- W2570973170 type Work @default.
- W2570973170 sameAs 2570973170 @default.
- W2570973170 citedByCount "145" @default.
- W2570973170 countsByYear W25709731702017 @default.
- W2570973170 countsByYear W25709731702018 @default.
- W2570973170 countsByYear W25709731702019 @default.
- W2570973170 countsByYear W25709731702020 @default.
- W2570973170 countsByYear W25709731702021 @default.
- W2570973170 countsByYear W25709731702022 @default.
- W2570973170 countsByYear W25709731702023 @default.
- W2570973170 crossrefType "journal-article" @default.
- W2570973170 hasAuthorship W2570973170A5006709991 @default.
- W2570973170 hasAuthorship W2570973170A5040588122 @default.
- W2570973170 hasAuthorship W2570973170A5043646061 @default.
- W2570973170 hasAuthorship W2570973170A5046281685 @default.
- W2570973170 hasAuthorship W2570973170A5047156899 @default.
- W2570973170 hasAuthorship W2570973170A5052185015 @default.
- W2570973170 hasAuthorship W2570973170A5070974897 @default.
- W2570973170 hasConcept C126322002 @default.
- W2570973170 hasConcept C126838900 @default.
- W2570973170 hasConcept C143753070 @default.
- W2570973170 hasConcept C151730666 @default.
- W2570973170 hasConcept C206111553 @default.
- W2570973170 hasConcept C2776731575 @default.
- W2570973170 hasConcept C2779022025 @default.
- W2570973170 hasConcept C526584372 @default.
- W2570973170 hasConcept C58471807 @default.
- W2570973170 hasConcept C71924100 @default.
- W2570973170 hasConcept C86803240 @default.
- W2570973170 hasConceptScore W2570973170C126322002 @default.
- W2570973170 hasConceptScore W2570973170C126838900 @default.
- W2570973170 hasConceptScore W2570973170C143753070 @default.
- W2570973170 hasConceptScore W2570973170C151730666 @default.
- W2570973170 hasConceptScore W2570973170C206111553 @default.
- W2570973170 hasConceptScore W2570973170C2776731575 @default.
- W2570973170 hasConceptScore W2570973170C2779022025 @default.
- W2570973170 hasConceptScore W2570973170C526584372 @default.
- W2570973170 hasConceptScore W2570973170C58471807 @default.
- W2570973170 hasConceptScore W2570973170C71924100 @default.
- W2570973170 hasConceptScore W2570973170C86803240 @default.
- W2570973170 hasIssue "4" @default.
- W2570973170 hasLocation W25709731701 @default.
- W2570973170 hasLocation W25709731702 @default.
- W2570973170 hasOpenAccess W2570973170 @default.
- W2570973170 hasPrimaryLocation W25709731701 @default.
- W2570973170 hasRelatedWork W2033072122 @default.
- W2570973170 hasRelatedWork W2044890269 @default.
- W2570973170 hasRelatedWork W2069767689 @default.
- W2570973170 hasRelatedWork W2372575614 @default.
- W2570973170 hasRelatedWork W2570973170 @default.
- W2570973170 hasRelatedWork W2583571394 @default.
- W2570973170 hasRelatedWork W2845287209 @default.
- W2570973170 hasRelatedWork W2977910349 @default.
- W2570973170 hasRelatedWork W4308592906 @default.
- W2570973170 hasRelatedWork W61020116 @default.
- W2570973170 hasVolume "27" @default.
- W2570973170 isParatext "false" @default.
- W2570973170 isRetracted "false" @default.
- W2570973170 magId "2570973170" @default.
- W2570973170 workType "article" @default.