Matches in SemOpenAlex for { <https://semopenalex.org/work/W2571621906> ?p ?o ?g. }
- W2571621906 abstract "Recent advances in deep learning methodologies are enabling the construction of more accurate classifiers. However, existing labeled face datasets are limited in size, which prevents CNN models from reaching their full generalization capabilities. A variety of techniques to generate new training samples based on data augmentation have been proposed, but the great majority is limited to very simple transformations. The approach proposed in this paper takes into account intrinsic information about human faces in order to generate an augmented dataset that is used to train a CNN, by creating photo-realistic smooth face variations based on Active Appearance Models optimized for human faces. An experimental evaluation taking CNN models trained with original and augmented versions of the MORPH face dataset allowed an increase of 10% in the F-Score and yielded Receiver Operating Characteristic curves that outperformed state-of-the-art work in the literature." @default.
- W2571621906 created "2017-01-26" @default.
- W2571621906 creator A5009415663 @default.
- W2571621906 creator A5035793673 @default.
- W2571621906 creator A5065407374 @default.
- W2571621906 date "2016-10-01" @default.
- W2571621906 modified "2023-09-30" @default.
- W2571621906 title "A Data Augmentation Methodology to Improve Age Estimation Using Convolutional Neural Networks" @default.
- W2571621906 cites W1499371630 @default.
- W2571621906 cites W182571476 @default.
- W2571621906 cites W1950888772 @default.
- W2571621906 cites W1965804146 @default.
- W2571621906 cites W1970456555 @default.
- W2571621906 cites W1979651826 @default.
- W2571621906 cites W1989591022 @default.
- W2571621906 cites W2015475217 @default.
- W2571621906 cites W2025183033 @default.
- W2571621906 cites W2037547340 @default.
- W2571621906 cites W2082308025 @default.
- W2571621906 cites W2097117768 @default.
- W2571621906 cites W2112796928 @default.
- W2571621906 cites W2118664399 @default.
- W2571621906 cites W2128200964 @default.
- W2571621906 cites W2129515371 @default.
- W2571621906 cites W2131463865 @default.
- W2571621906 cites W2132723029 @default.
- W2571621906 cites W2137659841 @default.
- W2571621906 cites W2152175008 @default.
- W2571621906 cites W2152826865 @default.
- W2571621906 cites W2155893237 @default.
- W2571621906 cites W2163605009 @default.
- W2571621906 cites W2164598857 @default.
- W2571621906 cites W2170505850 @default.
- W2571621906 cites W2181607856 @default.
- W2571621906 cites W2190186811 @default.
- W2571621906 cites W2241456912 @default.
- W2571621906 cites W2249960609 @default.
- W2571621906 cites W2271840356 @default.
- W2571621906 cites W2293295816 @default.
- W2571621906 cites W2952020226 @default.
- W2571621906 cites W2964014446 @default.
- W2571621906 cites W2971437569 @default.
- W2571621906 cites W610429473 @default.
- W2571621906 cites W753012316 @default.
- W2571621906 doi "https://doi.org/10.1109/sibgrapi.2016.021" @default.
- W2571621906 hasPublicationYear "2016" @default.
- W2571621906 type Work @default.
- W2571621906 sameAs 2571621906 @default.
- W2571621906 citedByCount "8" @default.
- W2571621906 countsByYear W25716219062017 @default.
- W2571621906 countsByYear W25716219062018 @default.
- W2571621906 countsByYear W25716219062019 @default.
- W2571621906 countsByYear W25716219062020 @default.
- W2571621906 countsByYear W25716219062023 @default.
- W2571621906 crossrefType "proceedings-article" @default.
- W2571621906 hasAuthorship W2571621906A5009415663 @default.
- W2571621906 hasAuthorship W2571621906A5035793673 @default.
- W2571621906 hasAuthorship W2571621906A5065407374 @default.
- W2571621906 hasConcept C108583219 @default.
- W2571621906 hasConcept C111472728 @default.
- W2571621906 hasConcept C119857082 @default.
- W2571621906 hasConcept C134306372 @default.
- W2571621906 hasConcept C138885662 @default.
- W2571621906 hasConcept C144024400 @default.
- W2571621906 hasConcept C153180895 @default.
- W2571621906 hasConcept C154945302 @default.
- W2571621906 hasConcept C177148314 @default.
- W2571621906 hasConcept C2779304628 @default.
- W2571621906 hasConcept C2780586882 @default.
- W2571621906 hasConcept C31510193 @default.
- W2571621906 hasConcept C33923547 @default.
- W2571621906 hasConcept C36289849 @default.
- W2571621906 hasConcept C41008148 @default.
- W2571621906 hasConcept C51632099 @default.
- W2571621906 hasConcept C67186912 @default.
- W2571621906 hasConcept C77088390 @default.
- W2571621906 hasConcept C81363708 @default.
- W2571621906 hasConceptScore W2571621906C108583219 @default.
- W2571621906 hasConceptScore W2571621906C111472728 @default.
- W2571621906 hasConceptScore W2571621906C119857082 @default.
- W2571621906 hasConceptScore W2571621906C134306372 @default.
- W2571621906 hasConceptScore W2571621906C138885662 @default.
- W2571621906 hasConceptScore W2571621906C144024400 @default.
- W2571621906 hasConceptScore W2571621906C153180895 @default.
- W2571621906 hasConceptScore W2571621906C154945302 @default.
- W2571621906 hasConceptScore W2571621906C177148314 @default.
- W2571621906 hasConceptScore W2571621906C2779304628 @default.
- W2571621906 hasConceptScore W2571621906C2780586882 @default.
- W2571621906 hasConceptScore W2571621906C31510193 @default.
- W2571621906 hasConceptScore W2571621906C33923547 @default.
- W2571621906 hasConceptScore W2571621906C36289849 @default.
- W2571621906 hasConceptScore W2571621906C41008148 @default.
- W2571621906 hasConceptScore W2571621906C51632099 @default.
- W2571621906 hasConceptScore W2571621906C67186912 @default.
- W2571621906 hasConceptScore W2571621906C77088390 @default.
- W2571621906 hasConceptScore W2571621906C81363708 @default.
- W2571621906 hasLocation W25716219061 @default.
- W2571621906 hasOpenAccess W2571621906 @default.
- W2571621906 hasPrimaryLocation W25716219061 @default.
- W2571621906 hasRelatedWork W2209990155 @default.