Matches in SemOpenAlex for { <https://semopenalex.org/work/W2571778848> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2571778848 abstract "The ability to understand the expertise of users in Social Networking Sites (SNSs) is a key component for delivering effective information services such as talent seeking and user recommendation. However, users are often unwilling to make the effort to explicitly provide this information, so existing methods aimed at user expertise discovery in SNSs primarily rely on implicit inference. This work aims to infer a user's expertise based on their posts on the popular micro-blogging site Twitter. The work proposes a sentiment-weighted and topic relation-regularized learning model to address this problem. It first uses the sentiment intensity of a tweet to evaluate its importance in inferring a user's expertise. The intuition is that if a person can forcefully and subjectively express their opinion on a topic, it is more likely that the person has strong knowledge of that topic. Secondly, the relatedness between expertise topics is exploited to model the inference problem. The experiments reported in this paper were conducted on a large-scale dataset with over 10,000 Twitter users and 149 expertise topics. The results demonstrate the success of our proposed approach in user expertise inference and show that the proposed approach outperforms several alternative methods." @default.
- W2571778848 created "2017-01-26" @default.
- W2571778848 creator A5019937750 @default.
- W2571778848 creator A5075624316 @default.
- W2571778848 creator A5077651244 @default.
- W2571778848 date "2016-10-01" @default.
- W2571778848 modified "2023-10-01" @default.
- W2571778848 title "Inferring Your Expertise from Twitter: Integrating Sentiment and Topic Relatedness" @default.
- W2571778848 cites W139119103 @default.
- W2571778848 cites W1967579779 @default.
- W2571778848 cites W1968133322 @default.
- W2571778848 cites W1975583660 @default.
- W2571778848 cites W1978394996 @default.
- W2571778848 cites W1998635907 @default.
- W2571778848 cites W2006801410 @default.
- W2571778848 cites W2025895610 @default.
- W2571778848 cites W2038364479 @default.
- W2571778848 cites W2047268912 @default.
- W2571778848 cites W2051766512 @default.
- W2571778848 cites W2075397336 @default.
- W2571778848 cites W2076219102 @default.
- W2571778848 cites W2093557879 @default.
- W2571778848 cites W2094268994 @default.
- W2571778848 cites W2096158882 @default.
- W2571778848 cites W2103915252 @default.
- W2571778848 cites W2104973501 @default.
- W2571778848 cites W2126226055 @default.
- W2571778848 cites W2132613313 @default.
- W2571778848 cites W2136480620 @default.
- W2571778848 cites W2152843082 @default.
- W2571778848 cites W2155096379 @default.
- W2571778848 cites W2157025439 @default.
- W2571778848 cites W4211186029 @default.
- W2571778848 cites W4256161694 @default.
- W2571778848 doi "https://doi.org/10.1109/wi.2016.0027" @default.
- W2571778848 hasPublicationYear "2016" @default.
- W2571778848 type Work @default.
- W2571778848 sameAs 2571778848 @default.
- W2571778848 citedByCount "5" @default.
- W2571778848 countsByYear W25717788482017 @default.
- W2571778848 countsByYear W25717788482018 @default.
- W2571778848 countsByYear W25717788482020 @default.
- W2571778848 countsByYear W25717788482022 @default.
- W2571778848 crossrefType "proceedings-article" @default.
- W2571778848 hasAuthorship W2571778848A5019937750 @default.
- W2571778848 hasAuthorship W2571778848A5075624316 @default.
- W2571778848 hasAuthorship W2571778848A5077651244 @default.
- W2571778848 hasConcept C136764020 @default.
- W2571778848 hasConcept C143275388 @default.
- W2571778848 hasConcept C204321447 @default.
- W2571778848 hasConcept C23123220 @default.
- W2571778848 hasConcept C2522767166 @default.
- W2571778848 hasConcept C41008148 @default.
- W2571778848 hasConcept C518677369 @default.
- W2571778848 hasConcept C66402592 @default.
- W2571778848 hasConceptScore W2571778848C136764020 @default.
- W2571778848 hasConceptScore W2571778848C143275388 @default.
- W2571778848 hasConceptScore W2571778848C204321447 @default.
- W2571778848 hasConceptScore W2571778848C23123220 @default.
- W2571778848 hasConceptScore W2571778848C2522767166 @default.
- W2571778848 hasConceptScore W2571778848C41008148 @default.
- W2571778848 hasConceptScore W2571778848C518677369 @default.
- W2571778848 hasConceptScore W2571778848C66402592 @default.
- W2571778848 hasLocation W25717788481 @default.
- W2571778848 hasOpenAccess W2571778848 @default.
- W2571778848 hasPrimaryLocation W25717788481 @default.
- W2571778848 hasRelatedWork W2252197266 @default.
- W2571778848 hasRelatedWork W2401318294 @default.
- W2571778848 hasRelatedWork W2412155161 @default.
- W2571778848 hasRelatedWork W2748952813 @default.
- W2571778848 hasRelatedWork W2785337750 @default.
- W2571778848 hasRelatedWork W2985289539 @default.
- W2571778848 hasRelatedWork W3049681097 @default.
- W2571778848 hasRelatedWork W4206969454 @default.
- W2571778848 hasRelatedWork W798398829 @default.
- W2571778848 hasRelatedWork W2119977295 @default.
- W2571778848 isParatext "false" @default.
- W2571778848 isRetracted "false" @default.
- W2571778848 magId "2571778848" @default.
- W2571778848 workType "article" @default.