Matches in SemOpenAlex for { <https://semopenalex.org/work/W2571895513> ?p ?o ?g. }
- W2571895513 endingPage "110" @default.
- W2571895513 startingPage "99" @default.
- W2571895513 abstract "More and more models and algorithms are used to predict business failure. Many of them are not suitable for the complicated distribution of financial data, which leads to unsatisfactory prediction performance. The manifold learning algorithm is a valid method to preprocess financial data because of the good performance on dimensionality reduction for any data distribution. The kernel-based method is introduced to improve the disadvantage of fuzzy self-organizing map (FSOM) which is the limitation of spherical data distribution. Therefore, this study adopts manifold learning algorithm to select feature subsets, and employs the kernel-based FSOM (KFSOM) to compose base classifiers, and proposes the two-stage selective ensemble model for business failure prediction (BFP). First, three manifold learning algorithms, which are Isomap, Laplacian Eigenmaps and Locally Linear Embedding, are adopted to select three feature subsets from original financial data. Then, KFSOM uses three kinds of kernel functions respectively, which are Gaussian, Polynomial and Sigmoid, to obtain three classifiers. Hence, three feature subsets are computed by KFSOMs with three kernel functions respectively to acquire nine base classifiers. Last, nine base classifiers are integrated by the two-stage selective ensemble method. In the first stage, nine base classifiers are ranked according to three standards. The stepwise forward selection approach is adopted to selectively integrate nine base classifiers according to different standards. In the second stage, three selective ensembles in the first stage are integrated again to acquire the final result. In the empirical research, this work employs financial data from Chinese listed companies to predict business failure, and makes comparative analysis with previous methods. It is the conclusion that the two-stage selective ensemble with manifold learning algorithm and KFSOM is good at predicting business failure." @default.
- W2571895513 created "2017-01-26" @default.
- W2571895513 creator A5029484872 @default.
- W2571895513 creator A5061684739 @default.
- W2571895513 date "2017-04-01" @default.
- W2571895513 modified "2023-10-12" @default.
- W2571895513 title "Business failure prediction based on two-stage selective ensemble with manifold learning algorithm and kernel-based fuzzy self-organizing map" @default.
- W2571895513 cites W1175774059 @default.
- W2571895513 cites W1757232183 @default.
- W2571895513 cites W1990564389 @default.
- W2571895513 cites W1995579838 @default.
- W2571895513 cites W1997653576 @default.
- W2571895513 cites W2001141328 @default.
- W2571895513 cites W2006680549 @default.
- W2571895513 cites W2009616822 @default.
- W2571895513 cites W2012162586 @default.
- W2571895513 cites W2014464762 @default.
- W2571895513 cites W2020848494 @default.
- W2571895513 cites W2023779506 @default.
- W2571895513 cites W2026701434 @default.
- W2571895513 cites W2037781710 @default.
- W2571895513 cites W2043956603 @default.
- W2571895513 cites W2046677448 @default.
- W2571895513 cites W2048801439 @default.
- W2571895513 cites W2053186076 @default.
- W2571895513 cites W2060541277 @default.
- W2571895513 cites W2064946026 @default.
- W2571895513 cites W2065702555 @default.
- W2571895513 cites W2068338255 @default.
- W2571895513 cites W2073678701 @default.
- W2571895513 cites W2077643774 @default.
- W2571895513 cites W2088542838 @default.
- W2571895513 cites W2092730838 @default.
- W2571895513 cites W2097308346 @default.
- W2571895513 cites W2100128988 @default.
- W2571895513 cites W2112878397 @default.
- W2571895513 cites W2116139218 @default.
- W2571895513 cites W2124532504 @default.
- W2571895513 cites W2161535772 @default.
- W2571895513 cites W2178133414 @default.
- W2571895513 cites W2184721046 @default.
- W2571895513 cites W2195092867 @default.
- W2571895513 cites W2205149811 @default.
- W2571895513 cites W2215797958 @default.
- W2571895513 cites W2232919208 @default.
- W2571895513 cites W2251898997 @default.
- W2571895513 cites W2283921858 @default.
- W2571895513 cites W2293081571 @default.
- W2571895513 cites W2319270064 @default.
- W2571895513 cites W2341983589 @default.
- W2571895513 cites W2735169268 @default.
- W2571895513 doi "https://doi.org/10.1016/j.knosys.2017.01.016" @default.
- W2571895513 hasPublicationYear "2017" @default.
- W2571895513 type Work @default.
- W2571895513 sameAs 2571895513 @default.
- W2571895513 citedByCount "41" @default.
- W2571895513 countsByYear W25718955132017 @default.
- W2571895513 countsByYear W25718955132018 @default.
- W2571895513 countsByYear W25718955132019 @default.
- W2571895513 countsByYear W25718955132020 @default.
- W2571895513 countsByYear W25718955132021 @default.
- W2571895513 countsByYear W25718955132022 @default.
- W2571895513 countsByYear W25718955132023 @default.
- W2571895513 crossrefType "journal-article" @default.
- W2571895513 hasAuthorship W2571895513A5029484872 @default.
- W2571895513 hasAuthorship W2571895513A5061684739 @default.
- W2571895513 hasConcept C11413529 @default.
- W2571895513 hasConcept C114614502 @default.
- W2571895513 hasConcept C119857082 @default.
- W2571895513 hasConcept C151876577 @default.
- W2571895513 hasConcept C153180895 @default.
- W2571895513 hasConcept C154945302 @default.
- W2571895513 hasConcept C2778626561 @default.
- W2571895513 hasConcept C33923547 @default.
- W2571895513 hasConcept C41008148 @default.
- W2571895513 hasConcept C70518039 @default.
- W2571895513 hasConcept C74193536 @default.
- W2571895513 hasConceptScore W2571895513C11413529 @default.
- W2571895513 hasConceptScore W2571895513C114614502 @default.
- W2571895513 hasConceptScore W2571895513C119857082 @default.
- W2571895513 hasConceptScore W2571895513C151876577 @default.
- W2571895513 hasConceptScore W2571895513C153180895 @default.
- W2571895513 hasConceptScore W2571895513C154945302 @default.
- W2571895513 hasConceptScore W2571895513C2778626561 @default.
- W2571895513 hasConceptScore W2571895513C33923547 @default.
- W2571895513 hasConceptScore W2571895513C41008148 @default.
- W2571895513 hasConceptScore W2571895513C70518039 @default.
- W2571895513 hasConceptScore W2571895513C74193536 @default.
- W2571895513 hasFunder F4320321001 @default.
- W2571895513 hasLocation W25718955131 @default.
- W2571895513 hasOpenAccess W2571895513 @default.
- W2571895513 hasPrimaryLocation W25718955131 @default.
- W2571895513 hasRelatedWork W1489327846 @default.
- W2571895513 hasRelatedWork W1966347620 @default.
- W2571895513 hasRelatedWork W2031810636 @default.
- W2571895513 hasRelatedWork W2037225398 @default.
- W2571895513 hasRelatedWork W2132734978 @default.
- W2571895513 hasRelatedWork W2166963679 @default.