Matches in SemOpenAlex for { <https://semopenalex.org/work/W25731608> ?p ?o ?g. }
- W25731608 abstract "Studies of populations such as drug users encounter difficulties because the members of the populations are rare, hidden, or hard to reach. Conventionally designed large-scale surveys detect relatively few members of the populations so that estimates of population characteristics have high uncertainty. Ethnographic studies, on the other hand, reach suitable numbers of individuals only through the use of link-tracing, chain referral, or snowball sampling procedures that often leave the investigators unable to make inferences from their sample to the hidden population as a whole. In adaptive sampling, the procedure for selecting people or other units to be in the sample depends on variables of interest observed during the survey, so the design adapts to the population as encountered. For example, when self-reported drug use is found among members of the sample, sampling effort may be increased in nearby areas. Types of adaptive sampling designs include ordinary sequential sampling, adaptive allocation in stratified sampling, adaptive cluster sampling, and optimal model-based designs. Graph sampling refers to situations with nodes (for example, people) connected by edges (such as social links or geographic proximity). An initial sample of nodes or edges is selected and edges are subsequently followed to bring other nodes into the sample. Graph sampling designs include network sampling, snowball sampling, link-tracing, chain referral, and adaptive cluster sampling. A graph sampling design is adaptive if the decision to include linked nodes depends on variables of interest observed on nodes already in the sample. Adjustment methods for nonsampling errors such as imperfect detection of drug users in the sample apply to adaptive as well as conventional designs." @default.
- W25731608 created "2016-06-24" @default.
- W25731608 creator A5038186298 @default.
- W25731608 date "1997-01-01" @default.
- W25731608 modified "2023-10-18" @default.
- W25731608 title "Adaptive Sampling in Behavioral Surveys" @default.
- W25731608 cites W1503872268 @default.
- W25731608 cites W1508733422 @default.
- W25731608 cites W1605248320 @default.
- W25731608 cites W171740068 @default.
- W25731608 cites W1970411742 @default.
- W25731608 cites W1987841672 @default.
- W25731608 cites W1991360271 @default.
- W25731608 cites W2002660645 @default.
- W25731608 cites W2002844873 @default.
- W25731608 cites W2010179823 @default.
- W25731608 cites W2010733167 @default.
- W25731608 cites W2015050906 @default.
- W25731608 cites W2015499894 @default.
- W25731608 cites W2030121885 @default.
- W25731608 cites W2036342705 @default.
- W25731608 cites W2042927087 @default.
- W25731608 cites W2053310106 @default.
- W25731608 cites W2057725660 @default.
- W25731608 cites W2057814327 @default.
- W25731608 cites W2058404719 @default.
- W25731608 cites W2061575690 @default.
- W25731608 cites W2064938847 @default.
- W25731608 cites W2065424415 @default.
- W25731608 cites W2081222242 @default.
- W25731608 cites W2090933024 @default.
- W25731608 cites W2091082553 @default.
- W25731608 cites W2092322680 @default.
- W25731608 cites W2100641901 @default.
- W25731608 cites W2116375698 @default.
- W25731608 cites W2116644247 @default.
- W25731608 cites W2118502261 @default.
- W25731608 cites W2152272100 @default.
- W25731608 cites W2164502119 @default.
- W25731608 cites W2167825870 @default.
- W25731608 cites W2257471707 @default.
- W25731608 cites W2279140944 @default.
- W25731608 cites W2284358449 @default.
- W25731608 cites W2288879222 @default.
- W25731608 cites W2316995484 @default.
- W25731608 cites W2318199257 @default.
- W25731608 cites W2322069134 @default.
- W25731608 cites W2325544235 @default.
- W25731608 cites W2328372058 @default.
- W25731608 cites W2330805404 @default.
- W25731608 cites W2397992951 @default.
- W25731608 cites W2414006248 @default.
- W25731608 cites W2514875075 @default.
- W25731608 cites W2897640613 @default.
- W25731608 cites W2946440777 @default.
- W25731608 cites W55730001 @default.
- W25731608 cites W5678587 @default.
- W25731608 cites W623648429 @default.
- W25731608 cites W77850803 @default.
- W25731608 cites W80162997 @default.
- W25731608 doi "https://doi.org/10.1037/e495622006-015" @default.
- W25731608 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9243567" @default.
- W25731608 hasPublicationYear "1997" @default.
- W25731608 type Work @default.
- W25731608 sameAs 25731608 @default.
- W25731608 citedByCount "22" @default.
- W25731608 countsByYear W257316082012 @default.
- W25731608 countsByYear W257316082014 @default.
- W25731608 countsByYear W257316082015 @default.
- W25731608 countsByYear W257316082016 @default.
- W25731608 countsByYear W257316082018 @default.
- W25731608 countsByYear W257316082021 @default.
- W25731608 countsByYear W257316082022 @default.
- W25731608 countsByYear W257316082023 @default.
- W25731608 crossrefType "dataset" @default.
- W25731608 hasAuthorship W25731608A5038186298 @default.
- W25731608 hasConcept C100363876 @default.
- W25731608 hasConcept C105795698 @default.
- W25731608 hasConcept C106131492 @default.
- W25731608 hasConcept C106399304 @default.
- W25731608 hasConcept C111919701 @default.
- W25731608 hasConcept C124101348 @default.
- W25731608 hasConcept C138673069 @default.
- W25731608 hasConcept C140779682 @default.
- W25731608 hasConcept C183380357 @default.
- W25731608 hasConcept C185592680 @default.
- W25731608 hasConcept C19499675 @default.
- W25731608 hasConcept C195454712 @default.
- W25731608 hasConcept C198531522 @default.
- W25731608 hasConcept C2781395549 @default.
- W25731608 hasConcept C2908647359 @default.
- W25731608 hasConcept C31972630 @default.
- W25731608 hasConcept C33923547 @default.
- W25731608 hasConcept C41008148 @default.
- W25731608 hasConcept C43617362 @default.
- W25731608 hasConcept C49898467 @default.
- W25731608 hasConcept C71924100 @default.
- W25731608 hasConcept C75373757 @default.
- W25731608 hasConcept C99454951 @default.
- W25731608 hasConceptScore W25731608C100363876 @default.