Matches in SemOpenAlex for { <https://semopenalex.org/work/W2573371722> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2573371722 abstract "To date, many machine learning applications have multiple views of features, and different applications require specific multivariate performance measures, such as the F-score for retrieval. However, existing multivariate performance measure optimization methods are limited to single-view data, while traditional multi-view learning methods cannot optimize multivariate performance measures directly. To fill this gap, in this paper, we propose the problem of optimizing multivariate performance measures from multi-view data, and an effective method to solve it. We propose to learn linear discriminant functions for different views, and combine them to construct an overall multivariate mapping function for multi-view data. To learn the parameters of the linear discriminant functions of different views to optimize a given multivariate performance measure, we formulate an optimization problem. In this problem, we propose to minimize the complexity of the linear discriminant function of each view, promote the consistency of the responses of different views over the same data points, and minimize the upper boundary of the corresponding loss of a given multivariate performance measure. To optimize this problem, we develop an iterative cutting-plane algorithm. Experiments on four benchmark data sets show that it not only outperforms traditional single-view based multivariate performance optimization methods, but also achieves better results than ordinary multi-view learning methods." @default.
- W2573371722 created "2017-01-26" @default.
- W2573371722 creator A5009607229 @default.
- W2573371722 creator A5021751767 @default.
- W2573371722 creator A5039919016 @default.
- W2573371722 date "2016-03-02" @default.
- W2573371722 modified "2023-10-16" @default.
- W2573371722 title "Optimizing Multivariate Performance Measures from Multi-View Data" @default.
- W2573371722 cites W1473009882 @default.
- W2573371722 cites W2035299679 @default.
- W2573371722 cites W2043205850 @default.
- W2573371722 cites W2069808690 @default.
- W2573371722 cites W2070771761 @default.
- W2573371722 cites W2085789144 @default.
- W2573371722 cites W2086326315 @default.
- W2573371722 cites W2104144433 @default.
- W2573371722 cites W2104193541 @default.
- W2573371722 cites W2121175492 @default.
- W2573371722 cites W2122770142 @default.
- W2573371722 cites W2128603141 @default.
- W2573371722 cites W2145234365 @default.
- W2573371722 cites W2149991085 @default.
- W2573371722 cites W2152464310 @default.
- W2573371722 cites W2153959628 @default.
- W2573371722 cites W2158703881 @default.
- W2573371722 cites W2167044614 @default.
- W2573371722 cites W2281931456 @default.
- W2573371722 cites W2951054453 @default.
- W2573371722 doi "https://doi.org/10.1609/aaai.v30i1.10252" @default.
- W2573371722 hasPublicationYear "2016" @default.
- W2573371722 type Work @default.
- W2573371722 sameAs 2573371722 @default.
- W2573371722 citedByCount "3" @default.
- W2573371722 countsByYear W25733717222016 @default.
- W2573371722 countsByYear W25733717222017 @default.
- W2573371722 crossrefType "journal-article" @default.
- W2573371722 hasAuthorship W2573371722A5009607229 @default.
- W2573371722 hasAuthorship W2573371722A5021751767 @default.
- W2573371722 hasAuthorship W2573371722A5039919016 @default.
- W2573371722 hasBestOaLocation W25733717221 @default.
- W2573371722 hasConcept C119857082 @default.
- W2573371722 hasConcept C124101348 @default.
- W2573371722 hasConcept C13280743 @default.
- W2573371722 hasConcept C154945302 @default.
- W2573371722 hasConcept C161584116 @default.
- W2573371722 hasConcept C185798385 @default.
- W2573371722 hasConcept C205649164 @default.
- W2573371722 hasConcept C21080849 @default.
- W2573371722 hasConcept C2776436953 @default.
- W2573371722 hasConcept C2780009758 @default.
- W2573371722 hasConcept C38180746 @default.
- W2573371722 hasConcept C41008148 @default.
- W2573371722 hasConcept C69738355 @default.
- W2573371722 hasConceptScore W2573371722C119857082 @default.
- W2573371722 hasConceptScore W2573371722C124101348 @default.
- W2573371722 hasConceptScore W2573371722C13280743 @default.
- W2573371722 hasConceptScore W2573371722C154945302 @default.
- W2573371722 hasConceptScore W2573371722C161584116 @default.
- W2573371722 hasConceptScore W2573371722C185798385 @default.
- W2573371722 hasConceptScore W2573371722C205649164 @default.
- W2573371722 hasConceptScore W2573371722C21080849 @default.
- W2573371722 hasConceptScore W2573371722C2776436953 @default.
- W2573371722 hasConceptScore W2573371722C2780009758 @default.
- W2573371722 hasConceptScore W2573371722C38180746 @default.
- W2573371722 hasConceptScore W2573371722C41008148 @default.
- W2573371722 hasConceptScore W2573371722C69738355 @default.
- W2573371722 hasIssue "1" @default.
- W2573371722 hasLocation W25733717221 @default.
- W2573371722 hasOpenAccess W2573371722 @default.
- W2573371722 hasPrimaryLocation W25733717221 @default.
- W2573371722 hasRelatedWork W1470425429 @default.
- W2573371722 hasRelatedWork W1531310768 @default.
- W2573371722 hasRelatedWork W1974184024 @default.
- W2573371722 hasRelatedWork W2087179002 @default.
- W2573371722 hasRelatedWork W2090629620 @default.
- W2573371722 hasRelatedWork W2129945984 @default.
- W2573371722 hasRelatedWork W2402900412 @default.
- W2573371722 hasRelatedWork W2417965255 @default.
- W2573371722 hasRelatedWork W4221088574 @default.
- W2573371722 hasRelatedWork W4287774426 @default.
- W2573371722 hasVolume "30" @default.
- W2573371722 isParatext "false" @default.
- W2573371722 isRetracted "false" @default.
- W2573371722 magId "2573371722" @default.
- W2573371722 workType "article" @default.