Matches in SemOpenAlex for { <https://semopenalex.org/work/W2573778312> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2573778312 abstract "The Fast Multipole Method (FMM) is in particular applied to many physical problems governed by equations of Helmholtz type which arise for e.g. linear acoustics, electromagnetic or elastic waves upon using Fourier transform in time or applying excitations under prescribed-frequency conditions. All cases involve integral equations whose (scalar or tensorial) kernels are defined, for three-dimensional formulations, in terms of the fundamental solution K(r) = exp(ikr)/4πr and its derivatives. The FMM crucially rests upon expansions of K(r) that allow a separation of variables between the “field” point y and the “source” point x (with r = y− x), which are available in several forms. These include the multipole expansion, based on the Gegenbauer addition theorem, and the plane-wave expansion of K(r) in diagonal form. For real values of the wavenumber k, which correspond to wave propagation problems in lossless media, FMMs based on either type of expansion have been extensively studied and implemented. These studies have in particular established that multipole expansions of K(r) are too costly except at low frequencies (because the expansion truncation threshold increases with k), while planewave expansions are well-suited to higher frequencies but break down in the low-wavenumber limit. It is also known that in the zero-wavenumber limit (i.e. static problems) an a-priori indication on the number N of multipoles to be employed in truncated expansions in order to obtain a prescribed accuracy in K(r), unaffected by the dimensions of the cells in the octree, is usually available. This nice feature (which ensures a O(ndof) complexity per iteration for multi-level FMMs applied to static problems) is no longer present in frequency-domain applications ([5, 1, 2]), where the implementation of the method is substantially complicated by the need to adapt the truncation order to the level of the octree (resulting in a O(ndof logndof) complexity per iteration). In contrast, only scattered efforts so far have been devoted to FMMs for Helmholtz-type problems involving complex wavenumbers k. Such formulations involve wavenumbers of the form k = (α+ iβ)θ (where θ is a parameter related to frequency and α,β are real constants). The paucity of available studies notwithstanding, complex-wavenumber FMMs arise for a number of different physical problems. First, such equations and kernels arise naturally upon considering wave propagation in lossy media (e.g. soils) in which mechanical or electromagnetic waves are damped. Such materials (e.g. viscoelastic materials) may be described, within frequency-domain approaches, in terms of linear constitutive relations involving complex moduli. This leads to complex-valued wavenumbers such that 0 < β < α, often with a small imaginary part, i.e. such that β/α 1, and represents the most direct generalization of Helmholtz-type equations with real wavenumbers. Another class of such problems correspond to parabolic problems involving elliptic partial differential operators in the space variables and first-order time derivatives, upon using Fourier transform in time or applying excitations at a prescribed frequency. They include heat conduction, transient Stokes flows, and eddy currents, and the associated Green’s functions or tensors involve K(r) with α = β = 1. Transient Stokes flows arise e.g. in connection with the analysis of dissipation in Micro-Systems. Also amenable to the general framework of Helmholtz-type equations (with purely imaginary frequency) is the computation of Casimir forces, which are attractive force arising between uncharged conductive surfaces in vacuum, a remarkable consequence of quantum electrodynamics In spite of its complicated nature, this phenomenon is now acquiring technological importance, as it has a major role in modern microand nano-technologies." @default.
- W2573778312 created "2017-01-26" @default.
- W2573778312 creator A5014740141 @default.
- W2573778312 creator A5032540213 @default.
- W2573778312 date "2010-01-01" @default.
- W2573778312 modified "2023-10-18" @default.
- W2573778312 title "On the application of Fast Multipole Methods to Helmholtz problems with complex wavenumber" @default.
- W2573778312 cites W1970694278 @default.
- W2573778312 cites W2032247658 @default.
- W2573778312 cites W2039174592 @default.
- W2573778312 cites W2132820941 @default.
- W2573778312 cites W2163068304 @default.
- W2573778312 hasPublicationYear "2010" @default.
- W2573778312 type Work @default.
- W2573778312 sameAs 2573778312 @default.
- W2573778312 citedByCount "0" @default.
- W2573778312 crossrefType "proceedings-article" @default.
- W2573778312 hasAuthorship W2573778312A5014740141 @default.
- W2573778312 hasAuthorship W2573778312A5032540213 @default.
- W2573778312 hasBestOaLocation W25737783122 @default.
- W2573778312 hasConcept C120665830 @default.
- W2573778312 hasConcept C121130766 @default.
- W2573778312 hasConcept C121332964 @default.
- W2573778312 hasConcept C134306372 @default.
- W2573778312 hasConcept C135115559 @default.
- W2573778312 hasConcept C182310444 @default.
- W2573778312 hasConcept C18591234 @default.
- W2573778312 hasConcept C27592594 @default.
- W2573778312 hasConcept C33923547 @default.
- W2573778312 hasConcept C41008148 @default.
- W2573778312 hasConcept C52765159 @default.
- W2573778312 hasConcept C62520636 @default.
- W2573778312 hasConceptScore W2573778312C120665830 @default.
- W2573778312 hasConceptScore W2573778312C121130766 @default.
- W2573778312 hasConceptScore W2573778312C121332964 @default.
- W2573778312 hasConceptScore W2573778312C134306372 @default.
- W2573778312 hasConceptScore W2573778312C135115559 @default.
- W2573778312 hasConceptScore W2573778312C182310444 @default.
- W2573778312 hasConceptScore W2573778312C18591234 @default.
- W2573778312 hasConceptScore W2573778312C27592594 @default.
- W2573778312 hasConceptScore W2573778312C33923547 @default.
- W2573778312 hasConceptScore W2573778312C41008148 @default.
- W2573778312 hasConceptScore W2573778312C52765159 @default.
- W2573778312 hasConceptScore W2573778312C62520636 @default.
- W2573778312 hasLocation W25737783121 @default.
- W2573778312 hasLocation W25737783122 @default.
- W2573778312 hasLocation W25737783123 @default.
- W2573778312 hasOpenAccess W2573778312 @default.
- W2573778312 hasPrimaryLocation W25737783121 @default.
- W2573778312 hasRelatedWork W1172464 @default.
- W2573778312 hasRelatedWork W2053386981 @default.
- W2573778312 hasRelatedWork W2246705272 @default.
- W2573778312 hasRelatedWork W2349866068 @default.
- W2573778312 hasRelatedWork W2354263668 @default.
- W2573778312 hasRelatedWork W2573778312 @default.
- W2573778312 hasRelatedWork W2911975128 @default.
- W2573778312 hasRelatedWork W2995496485 @default.
- W2573778312 hasRelatedWork W3188867114 @default.
- W2573778312 hasRelatedWork W4301169666 @default.
- W2573778312 isParatext "false" @default.
- W2573778312 isRetracted "false" @default.
- W2573778312 magId "2573778312" @default.
- W2573778312 workType "article" @default.