Matches in SemOpenAlex for { <https://semopenalex.org/work/W2574134509> ?p ?o ?g. }
- W2574134509 endingPage "13817" @default.
- W2574134509 startingPage "13805" @default.
- W2574134509 abstract "// Hung-Hsin Lin 1, 2, * , Nien-Chih Wei 3, * , Teh-Ying Chou 4, 5 , Chun-Chi Lin 1, 2 , Yuan-Tsu Lan 1, 2 , Shin-Ching Chang 1, 2 , Huann-Sheng Wang 1, 2 , Shung-Haur Yang 1, 2 , Wei-Shone Chen 1, 2 , Tzu-Chen Lin 1, 2 , Jen-Kou Lin 1, 2 , Jeng-Kai Jiang 1, 2 1 Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taiwan 2 Department of Surgery, School of Medicine, National Yang-Ming University, Taiwan 3 Auspex Diagnostics, Taiwan 4 Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan 5 Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan * These authors contributed equally to this work Correspondence to: Jeng-Kai Jiang, email: jkjiang@vghtpe.gov.tw Keywords: recurrence, drug efficacy, microarray, colorectal cancer, personalized treatment Received: July 06, 2016 Accepted: January 06, 2017 Published: January 13, 2017 ABSTRACT We developed a series of models to predict the likelihood of recurrence and the response to chemotherapy for the personalized treatment of stage I and II colorectal cancer patients. A recurrence prediction model was developed from 235 stage I/II patients. The model successfully distinguished between high-risk and low-risk groups, with a hazard ratio of recurrence of 4.66 ( p < 0.0001). More importantly, the model was accurate for both stage I (hazard ratio = 5.87, p = 0.0006) and stage II (hazard ratio = 4.30, p < 0.0001) disease. This model performed much better than the Oncotype and ColoPrint commercial services in identifying patients at high risk for stage II recurrence. And unlike the commercial services, the robust model included recurrence prediction for stage I patients. As stage I/II CRC patients usually do not receive chemotherapy, we generated chemotherapy efficacy prediction models with data from 358 stage III patients. The predictions were highly accurate: the hazard ratio of recurrence for responders vs. non-responders was 4.13 for those treated with FOLFOX ( p < 0.0001), and 3.16 ( p = 0.0012) for those treated with fluorouracil. We have thus created a prognostic model that accurately identifies patients at high risk for recurrence, and the first accurate chemotherapy efficacy prediction model for individual patients. In the future, complete personalized treatment plans for stage I/II patients may be developed if the drug prediction models generated from stage III patients are verified to be effective for stage I and II patients in prospective studies." @default.
- W2574134509 created "2017-01-26" @default.
- W2574134509 creator A5019340482 @default.
- W2574134509 creator A5031702465 @default.
- W2574134509 creator A5036194808 @default.
- W2574134509 creator A5048600766 @default.
- W2574134509 creator A5049787196 @default.
- W2574134509 creator A5058153748 @default.
- W2574134509 creator A5059719451 @default.
- W2574134509 creator A5063013939 @default.
- W2574134509 creator A5065520933 @default.
- W2574134509 creator A5070525318 @default.
- W2574134509 creator A5078536808 @default.
- W2574134509 creator A5089019983 @default.
- W2574134509 date "2017-01-13" @default.
- W2574134509 modified "2023-10-18" @default.
- W2574134509 title "Building personalized treatment plans for early-stage colorectal cancer patients" @default.
- W2574134509 cites W1604613409 @default.
- W2574134509 cites W1863095676 @default.
- W2574134509 cites W1975750510 @default.
- W2574134509 cites W1976443390 @default.
- W2574134509 cites W1986086154 @default.
- W2574134509 cites W2001537896 @default.
- W2574134509 cites W2010637767 @default.
- W2574134509 cites W2012085610 @default.
- W2574134509 cites W2015477737 @default.
- W2574134509 cites W2027616646 @default.
- W2574134509 cites W2031102273 @default.
- W2574134509 cites W2035571424 @default.
- W2574134509 cites W2036045525 @default.
- W2574134509 cites W2036204636 @default.
- W2574134509 cites W2037479456 @default.
- W2574134509 cites W2039646722 @default.
- W2574134509 cites W2041324691 @default.
- W2574134509 cites W2046210815 @default.
- W2574134509 cites W2054737154 @default.
- W2574134509 cites W2063222450 @default.
- W2574134509 cites W2071736773 @default.
- W2574134509 cites W2073196482 @default.
- W2574134509 cites W2081916287 @default.
- W2574134509 cites W2091763552 @default.
- W2574134509 cites W2095214257 @default.
- W2574134509 cites W2098916599 @default.
- W2574134509 cites W2100258195 @default.
- W2574134509 cites W2102622483 @default.
- W2574134509 cites W2105829583 @default.
- W2574134509 cites W2105915644 @default.
- W2574134509 cites W2107606922 @default.
- W2574134509 cites W2109708237 @default.
- W2574134509 cites W2113668642 @default.
- W2574134509 cites W2120615411 @default.
- W2574134509 cites W2121700962 @default.
- W2574134509 cites W2121770508 @default.
- W2574134509 cites W2122637648 @default.
- W2574134509 cites W2123069582 @default.
- W2574134509 cites W2128628626 @default.
- W2574134509 cites W2130458871 @default.
- W2574134509 cites W2131072420 @default.
- W2574134509 cites W2132561013 @default.
- W2574134509 cites W2138446143 @default.
- W2574134509 cites W2139687160 @default.
- W2574134509 cites W2140407706 @default.
- W2574134509 cites W2145093498 @default.
- W2574134509 cites W2152032358 @default.
- W2574134509 cites W2154941270 @default.
- W2574134509 cites W2157173581 @default.
- W2574134509 cites W2162746289 @default.
- W2574134509 cites W2332305139 @default.
- W2574134509 doi "https://doi.org/10.18632/oncotarget.14638" @default.
- W2574134509 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5355140" @default.
- W2574134509 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28099153" @default.
- W2574134509 hasPublicationYear "2017" @default.
- W2574134509 type Work @default.
- W2574134509 sameAs 2574134509 @default.
- W2574134509 citedByCount "12" @default.
- W2574134509 countsByYear W25741345092017 @default.
- W2574134509 countsByYear W25741345092018 @default.
- W2574134509 countsByYear W25741345092019 @default.
- W2574134509 countsByYear W25741345092020 @default.
- W2574134509 countsByYear W25741345092021 @default.
- W2574134509 countsByYear W25741345092022 @default.
- W2574134509 crossrefType "journal-article" @default.
- W2574134509 hasAuthorship W2574134509A5019340482 @default.
- W2574134509 hasAuthorship W2574134509A5031702465 @default.
- W2574134509 hasAuthorship W2574134509A5036194808 @default.
- W2574134509 hasAuthorship W2574134509A5048600766 @default.
- W2574134509 hasAuthorship W2574134509A5049787196 @default.
- W2574134509 hasAuthorship W2574134509A5058153748 @default.
- W2574134509 hasAuthorship W2574134509A5059719451 @default.
- W2574134509 hasAuthorship W2574134509A5063013939 @default.
- W2574134509 hasAuthorship W2574134509A5065520933 @default.
- W2574134509 hasAuthorship W2574134509A5070525318 @default.
- W2574134509 hasAuthorship W2574134509A5078536808 @default.
- W2574134509 hasAuthorship W2574134509A5089019983 @default.
- W2574134509 hasBestOaLocation W25741345091 @default.
- W2574134509 hasConcept C121608353 @default.
- W2574134509 hasConcept C126322002 @default.
- W2574134509 hasConcept C143998085 @default.