Matches in SemOpenAlex for { <https://semopenalex.org/work/W2574156929> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2574156929 endingPage "269" @default.
- W2574156929 startingPage "254" @default.
- W2574156929 abstract "Many real-world applications require multi-label classification where multiple target labels are assigned to each instance. In multi-label classification, there exist the intrinsic correlations between the labels and features. These correlations are beneficial for multi-label classification task since they reflect the coexistence of the input and output spaces that can be exploited for prediction. Traditional classification methods have attempted to reveal these correlations in different ways. However, existing methods demand expensive computation complexity for finding such correlation structures. Furthermore, these approaches can not identify the suitable number of label-feature correlation patterns. In this paper, we propose a Bayesian nonparametric (BNP) framework for multi-label classification that can automatically learn and exploit the unknown number of multi-label correlation. We utilize the recent techniques in stochastic inference to derive the cheap (but efficient) posterior inference algorithm for the model. In addition, our model can naturally exploit the useful information from missing label samples. Furthermore, we extend the model to update parameters in an online fashion that highlights the flexibility of our model against the existing approaches. We compare our method with the state-of-the-art multi-label classification algorithms on real-world datasets using both complete and missing label settings. Our model achieves better classification accuracy while our running time is consistently much faster than the baselines in an order of magnitude." @default.
- W2574156929 created "2017-01-26" @default.
- W2574156929 creator A5011012522 @default.
- W2574156929 creator A5022598327 @default.
- W2574156929 creator A5024215125 @default.
- W2574156929 creator A5045540854 @default.
- W2574156929 creator A5055078097 @default.
- W2574156929 date "2016-01-01" @default.
- W2574156929 modified "2023-09-22" @default.
- W2574156929 title "A Bayesian Nonparametric Approach for Multi-label Classification" @default.
- W2574156929 hasPublicationYear "2016" @default.
- W2574156929 type Work @default.
- W2574156929 sameAs 2574156929 @default.
- W2574156929 citedByCount "3" @default.
- W2574156929 countsByYear W25741569292017 @default.
- W2574156929 countsByYear W25741569292018 @default.
- W2574156929 crossrefType "proceedings-article" @default.
- W2574156929 hasAuthorship W2574156929A5011012522 @default.
- W2574156929 hasAuthorship W2574156929A5022598327 @default.
- W2574156929 hasAuthorship W2574156929A5024215125 @default.
- W2574156929 hasAuthorship W2574156929A5045540854 @default.
- W2574156929 hasAuthorship W2574156929A5055078097 @default.
- W2574156929 hasConcept C102366305 @default.
- W2574156929 hasConcept C105795698 @default.
- W2574156929 hasConcept C107673813 @default.
- W2574156929 hasConcept C119857082 @default.
- W2574156929 hasConcept C124101348 @default.
- W2574156929 hasConcept C138885662 @default.
- W2574156929 hasConcept C153180895 @default.
- W2574156929 hasConcept C154945302 @default.
- W2574156929 hasConcept C165696696 @default.
- W2574156929 hasConcept C2776214188 @default.
- W2574156929 hasConcept C2776401178 @default.
- W2574156929 hasConcept C2776482837 @default.
- W2574156929 hasConcept C2780598303 @default.
- W2574156929 hasConcept C33923547 @default.
- W2574156929 hasConcept C38652104 @default.
- W2574156929 hasConcept C41008148 @default.
- W2574156929 hasConcept C41895202 @default.
- W2574156929 hasConceptScore W2574156929C102366305 @default.
- W2574156929 hasConceptScore W2574156929C105795698 @default.
- W2574156929 hasConceptScore W2574156929C107673813 @default.
- W2574156929 hasConceptScore W2574156929C119857082 @default.
- W2574156929 hasConceptScore W2574156929C124101348 @default.
- W2574156929 hasConceptScore W2574156929C138885662 @default.
- W2574156929 hasConceptScore W2574156929C153180895 @default.
- W2574156929 hasConceptScore W2574156929C154945302 @default.
- W2574156929 hasConceptScore W2574156929C165696696 @default.
- W2574156929 hasConceptScore W2574156929C2776214188 @default.
- W2574156929 hasConceptScore W2574156929C2776401178 @default.
- W2574156929 hasConceptScore W2574156929C2776482837 @default.
- W2574156929 hasConceptScore W2574156929C2780598303 @default.
- W2574156929 hasConceptScore W2574156929C33923547 @default.
- W2574156929 hasConceptScore W2574156929C38652104 @default.
- W2574156929 hasConceptScore W2574156929C41008148 @default.
- W2574156929 hasConceptScore W2574156929C41895202 @default.
- W2574156929 hasLocation W25741569291 @default.
- W2574156929 hasOpenAccess W2574156929 @default.
- W2574156929 hasPrimaryLocation W25741569291 @default.
- W2574156929 hasRelatedWork W1481824277 @default.
- W2574156929 hasRelatedWork W1606795894 @default.
- W2574156929 hasRelatedWork W2037438700 @default.
- W2574156929 hasRelatedWork W2048041872 @default.
- W2574156929 hasRelatedWork W2048220343 @default.
- W2574156929 hasRelatedWork W2060829326 @default.
- W2574156929 hasRelatedWork W2067977748 @default.
- W2574156929 hasRelatedWork W2069874623 @default.
- W2574156929 hasRelatedWork W2079563711 @default.
- W2574156929 hasRelatedWork W2082497080 @default.
- W2574156929 hasRelatedWork W2116053666 @default.
- W2574156929 hasRelatedWork W2145757477 @default.
- W2574156929 hasRelatedWork W2149917474 @default.
- W2574156929 hasRelatedWork W2167789032 @default.
- W2574156929 hasRelatedWork W2495342377 @default.
- W2574156929 hasRelatedWork W2782603654 @default.
- W2574156929 hasRelatedWork W2951665052 @default.
- W2574156929 hasRelatedWork W3118640283 @default.
- W2574156929 hasRelatedWork W3173031374 @default.
- W2574156929 hasRelatedWork W3177655654 @default.
- W2574156929 isParatext "false" @default.
- W2574156929 isRetracted "false" @default.
- W2574156929 magId "2574156929" @default.
- W2574156929 workType "article" @default.