Matches in SemOpenAlex for { <https://semopenalex.org/work/W2574401276> ?p ?o ?g. }
- W2574401276 endingPage "94" @default.
- W2574401276 startingPage "85" @default.
- W2574401276 abstract "Extreme Learning Machine (ELM) algorithm not only has gained much attention of many scholars and researchers, but also has been widely applied in recent years especially when dealing with big data because of its better generalization performance and learning speed. The proposal of SS-ELM (semi-supervised Extreme Learning Machine) extends ELM algorithm to the area of semi-supervised learning which is an important issue of machine learning on big data. However, the original SS-ELM algorithm needs to store the data in the memory before processing it, so that it could not handle large and web-scale data sets which are of frequent appearance in the era of big data. To solve this problem, this paper firstly proposes an efficient parallel SS-ELM (PSS-ELM) algorithm on MapReduce model, adopting a series of optimizations to improve its performance. Then, a parallel approximate SS-ELM Algorithm based on MapReduce (PASS-ELM) is proposed. PASS-ELM is based on the approximate adjacent similarity matrix (AASM) algorithm, which leverages the Locality-Sensitive Hashing (LSH) scheme to calculate the approximate adjacent similarity matrix, thus greatly reducing the complexity and occupied memory. The proposed AASM algorithm is general, because the calculation of the adjacent similarity matrix is the key operation in many other machine learning algorithms. The experimental results have demonstrated that the proposed PASS-ELM algorithm can efficiently process very large-scale data sets with a good performance, without significantly impacting the accuracy of the results." @default.
- W2574401276 created "2017-01-26" @default.
- W2574401276 creator A5011482738 @default.
- W2574401276 creator A5078793726 @default.
- W2574401276 creator A5087894632 @default.
- W2574401276 creator A5087964617 @default.
- W2574401276 date "2017-10-01" @default.
- W2574401276 modified "2023-10-15" @default.
- W2574401276 title "A parallel approximate SS-ELM algorithm based on MapReduce for large-scale datasets" @default.
- W2574401276 cites W1967838552 @default.
- W2574401276 cites W1971774955 @default.
- W2574401276 cites W1973433968 @default.
- W2574401276 cites W1973747955 @default.
- W2574401276 cites W1978578227 @default.
- W2574401276 cites W1990361999 @default.
- W2574401276 cites W1990938413 @default.
- W2574401276 cites W2005228904 @default.
- W2574401276 cites W2026131661 @default.
- W2574401276 cites W2042184006 @default.
- W2574401276 cites W2043009412 @default.
- W2574401276 cites W2045489657 @default.
- W2574401276 cites W2052842899 @default.
- W2574401276 cites W2055743332 @default.
- W2574401276 cites W2058128874 @default.
- W2574401276 cites W2061354549 @default.
- W2574401276 cites W2069564486 @default.
- W2574401276 cites W2071256736 @default.
- W2574401276 cites W2077611589 @default.
- W2574401276 cites W2103024562 @default.
- W2574401276 cites W2111072639 @default.
- W2574401276 cites W2129898896 @default.
- W2574401276 cites W2158054309 @default.
- W2574401276 cites W2159588611 @default.
- W2574401276 cites W2168618665 @default.
- W2574401276 cites W2173213060 @default.
- W2574401276 cites W2294551910 @default.
- W2574401276 doi "https://doi.org/10.1016/j.jpdc.2017.01.007" @default.
- W2574401276 hasPublicationYear "2017" @default.
- W2574401276 type Work @default.
- W2574401276 sameAs 2574401276 @default.
- W2574401276 citedByCount "12" @default.
- W2574401276 countsByYear W25744012762017 @default.
- W2574401276 countsByYear W25744012762018 @default.
- W2574401276 countsByYear W25744012762019 @default.
- W2574401276 countsByYear W25744012762020 @default.
- W2574401276 countsByYear W25744012762021 @default.
- W2574401276 countsByYear W25744012762022 @default.
- W2574401276 countsByYear W25744012762023 @default.
- W2574401276 crossrefType "journal-article" @default.
- W2574401276 hasAuthorship W2574401276A5011482738 @default.
- W2574401276 hasAuthorship W2574401276A5078793726 @default.
- W2574401276 hasAuthorship W2574401276A5087894632 @default.
- W2574401276 hasAuthorship W2574401276A5087964617 @default.
- W2574401276 hasConcept C103278499 @default.
- W2574401276 hasConcept C11413529 @default.
- W2574401276 hasConcept C115961682 @default.
- W2574401276 hasConcept C119857082 @default.
- W2574401276 hasConcept C124101348 @default.
- W2574401276 hasConcept C134306372 @default.
- W2574401276 hasConcept C154945302 @default.
- W2574401276 hasConcept C177148314 @default.
- W2574401276 hasConcept C2780150128 @default.
- W2574401276 hasConcept C33923547 @default.
- W2574401276 hasConcept C38652104 @default.
- W2574401276 hasConcept C41008148 @default.
- W2574401276 hasConcept C50644808 @default.
- W2574401276 hasConcept C75684735 @default.
- W2574401276 hasConcept C99138194 @default.
- W2574401276 hasConceptScore W2574401276C103278499 @default.
- W2574401276 hasConceptScore W2574401276C11413529 @default.
- W2574401276 hasConceptScore W2574401276C115961682 @default.
- W2574401276 hasConceptScore W2574401276C119857082 @default.
- W2574401276 hasConceptScore W2574401276C124101348 @default.
- W2574401276 hasConceptScore W2574401276C134306372 @default.
- W2574401276 hasConceptScore W2574401276C154945302 @default.
- W2574401276 hasConceptScore W2574401276C177148314 @default.
- W2574401276 hasConceptScore W2574401276C2780150128 @default.
- W2574401276 hasConceptScore W2574401276C33923547 @default.
- W2574401276 hasConceptScore W2574401276C38652104 @default.
- W2574401276 hasConceptScore W2574401276C41008148 @default.
- W2574401276 hasConceptScore W2574401276C50644808 @default.
- W2574401276 hasConceptScore W2574401276C75684735 @default.
- W2574401276 hasConceptScore W2574401276C99138194 @default.
- W2574401276 hasFunder F4320321001 @default.
- W2574401276 hasLocation W25744012761 @default.
- W2574401276 hasOpenAccess W2574401276 @default.
- W2574401276 hasPrimaryLocation W25744012761 @default.
- W2574401276 hasRelatedWork W1525510058 @default.
- W2574401276 hasRelatedWork W2487362010 @default.
- W2574401276 hasRelatedWork W2556319748 @default.
- W2574401276 hasRelatedWork W2961085424 @default.
- W2574401276 hasRelatedWork W3000665644 @default.
- W2574401276 hasRelatedWork W3014300295 @default.
- W2574401276 hasRelatedWork W4313488044 @default.
- W2574401276 hasRelatedWork W4384300587 @default.
- W2574401276 hasRelatedWork W4385730426 @default.
- W2574401276 hasRelatedWork W2339759963 @default.
- W2574401276 hasVolume "108" @default.