Matches in SemOpenAlex for { <https://semopenalex.org/work/W2574563668> ?p ?o ?g. }
- W2574563668 endingPage "185" @default.
- W2574563668 startingPage "156" @default.
- W2574563668 abstract "This paper runs forecasting experiments for wave energy over a range of 22 sites worldwide. The wave parameters are derived from physics-based model simulations. In order to better represent the sea state variability, the model values are embedded in noise drawn from several distributions, with seasonal weights, based on wave buoy data. Converter matrices are used to calculate the power output, and the power series are aggregated to create large wave farms. Three types of wave energy converters are simulated: an attenuator, a floating heave buoy array, and an oscillating flap device. Forecasting tests are run over horizons of 1–4 h, and reserves are calculated. By analyzing multiple sites over wide distances, it is possible to identify underlying parallels in the findings. First, despite differences in weather patterns and bathymetry, the forecast errors lie in a fairly narrow range. At the 1 h horizon, the errors for the attenuator range from a high of 7.6 percent and a low of 4.7 percent, with a mean of 5.8 percent. The errors for the heave buoy array range from a high of 7.9 percent to a low of 2.4 percent, with a mean of 5.5 percent. The errors for the oscillating flap device range from a high of 8.9 percent to a low of 4.9 percent, with a mean of 6.5 percent. The narrow range of the errors indicates that from the standpoint of predicting wave energy, the similarities among sites outweigh the differences. Second, reserves required to balance surpluses and shortages of power are substantially lower than the costs associated with wind and solar. Using an average of the 22 sites, at the 1-h horizon, capacity-up reserves (needed to offset power deficits) range from 5.1 to 6.2 percent of the power. Capacity-down reserves (needed to offset power surpluses) range from 5.4 to 6.9 percent of the power. Third, forecast accuracy shows a mild inverse relationship to the wave energy – all other things being equal, higher energy sites are more difficult to predict. However, the main determinant of forecast accuracy is the probability distribution. When the distribution has heavy tails, forecast errors and reserve costs are higher. Taken together, these factors account for 70 percent of the forecast error." @default.
- W2574563668 created "2017-01-26" @default.
- W2574563668 creator A5031245594 @default.
- W2574563668 creator A5032673813 @default.
- W2574563668 creator A5038545789 @default.
- W2574563668 date "2017-04-01" @default.
- W2574563668 modified "2023-10-02" @default.
- W2574563668 title "Wave energy worldwide: Simulating wave farms, forecasting, and calculating reserves" @default.
- W2574563668 cites W1868175309 @default.
- W2574563668 cites W1969553617 @default.
- W2574563668 cites W1975016606 @default.
- W2574563668 cites W1978137205 @default.
- W2574563668 cites W1980773453 @default.
- W2574563668 cites W1981410591 @default.
- W2574563668 cites W1982723853 @default.
- W2574563668 cites W1983264791 @default.
- W2574563668 cites W1984703120 @default.
- W2574563668 cites W1988303377 @default.
- W2574563668 cites W1988329483 @default.
- W2574563668 cites W2009714548 @default.
- W2574563668 cites W2016360700 @default.
- W2574563668 cites W2025342965 @default.
- W2574563668 cites W2027446201 @default.
- W2574563668 cites W2028438166 @default.
- W2574563668 cites W2040346184 @default.
- W2574563668 cites W2041116978 @default.
- W2574563668 cites W2044259228 @default.
- W2574563668 cites W2046680121 @default.
- W2574563668 cites W2047806049 @default.
- W2574563668 cites W2047880509 @default.
- W2574563668 cites W2057478400 @default.
- W2574563668 cites W2061079172 @default.
- W2574563668 cites W2065714405 @default.
- W2574563668 cites W2073935598 @default.
- W2574563668 cites W2078280512 @default.
- W2574563668 cites W2079201204 @default.
- W2574563668 cites W2080994329 @default.
- W2574563668 cites W2086661669 @default.
- W2574563668 cites W2086893123 @default.
- W2574563668 cites W2091810011 @default.
- W2574563668 cites W2097139473 @default.
- W2574563668 cites W2109705249 @default.
- W2574563668 cites W2110755562 @default.
- W2574563668 cites W2113609567 @default.
- W2574563668 cites W2134745163 @default.
- W2574563668 cites W2135748946 @default.
- W2574563668 cites W2146235859 @default.
- W2574563668 cites W2156576739 @default.
- W2574563668 cites W2161370875 @default.
- W2574563668 cites W2169046426 @default.
- W2574563668 cites W2178432704 @default.
- W2574563668 cites W2180850383 @default.
- W2574563668 cites W2185926022 @default.
- W2574563668 cites W2195613835 @default.
- W2574563668 cites W2260261703 @default.
- W2574563668 cites W4234373140 @default.
- W2574563668 cites W794178116 @default.
- W2574563668 doi "https://doi.org/10.1016/j.ijome.2017.01.004" @default.
- W2574563668 hasPublicationYear "2017" @default.
- W2574563668 type Work @default.
- W2574563668 sameAs 2574563668 @default.
- W2574563668 citedByCount "26" @default.
- W2574563668 countsByYear W25745636682017 @default.
- W2574563668 countsByYear W25745636682018 @default.
- W2574563668 countsByYear W25745636682019 @default.
- W2574563668 countsByYear W25745636682020 @default.
- W2574563668 countsByYear W25745636682021 @default.
- W2574563668 countsByYear W25745636682023 @default.
- W2574563668 crossrefType "journal-article" @default.
- W2574563668 hasAuthorship W2574563668A5031245594 @default.
- W2574563668 hasAuthorship W2574563668A5032673813 @default.
- W2574563668 hasAuthorship W2574563668A5038545789 @default.
- W2574563668 hasConcept C111368507 @default.
- W2574563668 hasConcept C120665830 @default.
- W2574563668 hasConcept C121332964 @default.
- W2574563668 hasConcept C127313418 @default.
- W2574563668 hasConcept C127413603 @default.
- W2574563668 hasConcept C146978453 @default.
- W2574563668 hasConcept C153294291 @default.
- W2574563668 hasConcept C165082838 @default.
- W2574563668 hasConcept C174847166 @default.
- W2574563668 hasConcept C184652730 @default.
- W2574563668 hasConcept C199104240 @default.
- W2574563668 hasConcept C204323151 @default.
- W2574563668 hasConcept C2779847632 @default.
- W2574563668 hasConcept C33923547 @default.
- W2574563668 hasConcept C39432304 @default.
- W2574563668 hasConcept C70620910 @default.
- W2574563668 hasConceptScore W2574563668C111368507 @default.
- W2574563668 hasConceptScore W2574563668C120665830 @default.
- W2574563668 hasConceptScore W2574563668C121332964 @default.
- W2574563668 hasConceptScore W2574563668C127313418 @default.
- W2574563668 hasConceptScore W2574563668C127413603 @default.
- W2574563668 hasConceptScore W2574563668C146978453 @default.
- W2574563668 hasConceptScore W2574563668C153294291 @default.
- W2574563668 hasConceptScore W2574563668C165082838 @default.
- W2574563668 hasConceptScore W2574563668C174847166 @default.
- W2574563668 hasConceptScore W2574563668C184652730 @default.