Matches in SemOpenAlex for { <https://semopenalex.org/work/W2575101240> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2575101240 abstract "Linear Numerical Magnitude Representations Aid Memory for Single Numbers Christopher J. Young (young.1202@osu.edu) Francesca E. Marciani (marciani.2@osu.edu) John E. Opfer (opfer.7@osu.edu) Department of Psychology, The Ohio State University, 1835 Neil Ave., 245 Psychology Building Columbus, OH 43210, USA Abstract important finding in this research is that the number of digits that can be accurately recalled at age 2 years is about 2, at age 5 about 4, at age 10 about 5, and among adults about 7 (+/- 2). Memory for numbers improves with age and experience. One source of this improvement may be children’s learning linear representations of numeric magnitude, but previous evidence for this hypothesis may have confounded memory span with linear numerical magnitude representations. To obviate the influence of memory span on numerical memory, we examined children’s ability to recall a single number after a delay, and the relation between recall and performance on other numeric tasks. Linearity of numerical performance was consistent across numerical tasks and was highly correlated with numerical memory. In contrast, recall of numeric information was not correlated with recall of colors. Results suggest that linear representations of numeric magnitudes aid memory for even single numbers. Representational Change Account Keywords: number representations; numerical estimation; memory Introduction Both in school and everyday life, children are presented with a potentially dazzling succession of numbers that they must remember. Some numbers must be remembered exactly, such as phone numbers and the answers to arithmetic problems (6 X 8 = 48). Others only need to be remembered approximately, such as the number of children in one’s class, the amount of money in one’s piggy bank, or the temperature forecast for tomorrow’s weather. When confronted with a series of numbers in either type of situation—e.g., a digit span task (Dempster, 1981) or a vignette (Brainerd & Gordon, 1994)—children’s memory for numbers is much poorer than adults’, and it improves greatly with age and experience. In this paper, we examine two theories attempting to explain this improvement in numerical memory—the working memory theory and the representational change theory—ancome d report on a novel memory task (memory for single numbers) that allowed us to test their predictions. Another proposal for the source of improvements in numerical memory came from a recent study by Thompson and Siegler (2010). They proposed that poor recall of numerical information could be partly traced to children’s developing representations of numerical magnitudes. Specifically, children’s representations of the magnitudes of symbolic numbers appear to develop iteratively, with parallel developmental changes occurring over many years and across many contexts (Opfer & Siegler, in press). Early in the learning process, numerical symbols are meaningless stimuli for young preschoolers. For example, 2- and 3-year- olds who count flawlessly from 1-10 have no idea that 6 > 4, nor do children of these ages know how many objects to give an adult who asks for 4 or more (Le Corre et al., 2006). As young children gain experience with the symbols in a given numerical range and associate them with non-verbal quantities in that range, they initially map them to a logarithmically-compressed mental number line (see Figure 1). Over a period that typically lasts 1-3 years for a given Working Memory Account There are at least two potential explanations for age- related improvements in children’s memory. The first proposal is that numerical information is better retained as children age because children’s working memory also improves, thereby leading to better verbatim memory for numerical information when more than one number is presented sequentially (Dempster, 1981). This idea has been highly influential, and it has led to the digit span task being used widely as a measure of working memory span. An Figure 1. Depiction of a logarithmically-compressed mental number line. Within this representation, differences among numeric values are represented as a function of the difference in the logarithms of the numbers to be represented. Thus, differences between 1 and 2 seem larger than between 5 and 6." @default.
- W2575101240 created "2017-01-26" @default.
- W2575101240 creator A5020656786 @default.
- W2575101240 creator A5038510970 @default.
- W2575101240 creator A5040129015 @default.
- W2575101240 date "2011-01-01" @default.
- W2575101240 modified "2023-09-23" @default.
- W2575101240 title "Linear Numerical Magnitude Representations Aid Memory for Single Numbers" @default.
- W2575101240 cites W1538550023 @default.
- W2575101240 cites W1966717652 @default.
- W2575101240 cites W1980606684 @default.
- W2575101240 cites W1995617678 @default.
- W2575101240 cites W2058734237 @default.
- W2575101240 cites W2118719059 @default.
- W2575101240 cites W2130776778 @default.
- W2575101240 cites W2136582088 @default.
- W2575101240 cites W2143679778 @default.
- W2575101240 cites W2145838191 @default.
- W2575101240 cites W2146102800 @default.
- W2575101240 cites W2160392095 @default.
- W2575101240 cites W2166245738 @default.
- W2575101240 cites W2167196634 @default.
- W2575101240 cites W2167210932 @default.
- W2575101240 cites W2171797832 @default.
- W2575101240 hasPublicationYear "2011" @default.
- W2575101240 type Work @default.
- W2575101240 sameAs 2575101240 @default.
- W2575101240 citedByCount "0" @default.
- W2575101240 crossrefType "journal-article" @default.
- W2575101240 hasAuthorship W2575101240A5020656786 @default.
- W2575101240 hasAuthorship W2575101240A5038510970 @default.
- W2575101240 hasAuthorship W2575101240A5040129015 @default.
- W2575101240 hasConcept C100660578 @default.
- W2575101240 hasConcept C118615104 @default.
- W2575101240 hasConcept C121332964 @default.
- W2575101240 hasConcept C126691448 @default.
- W2575101240 hasConcept C1276947 @default.
- W2575101240 hasConcept C133226019 @default.
- W2575101240 hasConcept C154945302 @default.
- W2575101240 hasConcept C15744967 @default.
- W2575101240 hasConcept C173600914 @default.
- W2575101240 hasConcept C180747234 @default.
- W2575101240 hasConcept C188147891 @default.
- W2575101240 hasConcept C2776502983 @default.
- W2575101240 hasConcept C33923547 @default.
- W2575101240 hasConcept C36668950 @default.
- W2575101240 hasConcept C41008148 @default.
- W2575101240 hasConcept C94375191 @default.
- W2575101240 hasConceptScore W2575101240C100660578 @default.
- W2575101240 hasConceptScore W2575101240C118615104 @default.
- W2575101240 hasConceptScore W2575101240C121332964 @default.
- W2575101240 hasConceptScore W2575101240C126691448 @default.
- W2575101240 hasConceptScore W2575101240C1276947 @default.
- W2575101240 hasConceptScore W2575101240C133226019 @default.
- W2575101240 hasConceptScore W2575101240C154945302 @default.
- W2575101240 hasConceptScore W2575101240C15744967 @default.
- W2575101240 hasConceptScore W2575101240C173600914 @default.
- W2575101240 hasConceptScore W2575101240C180747234 @default.
- W2575101240 hasConceptScore W2575101240C188147891 @default.
- W2575101240 hasConceptScore W2575101240C2776502983 @default.
- W2575101240 hasConceptScore W2575101240C33923547 @default.
- W2575101240 hasConceptScore W2575101240C36668950 @default.
- W2575101240 hasConceptScore W2575101240C41008148 @default.
- W2575101240 hasConceptScore W2575101240C94375191 @default.
- W2575101240 hasIssue "33" @default.
- W2575101240 hasLocation W25751012401 @default.
- W2575101240 hasOpenAccess W2575101240 @default.
- W2575101240 hasPrimaryLocation W25751012401 @default.
- W2575101240 hasRelatedWork W1855170058 @default.
- W2575101240 hasRelatedWork W1974855647 @default.
- W2575101240 hasRelatedWork W2022098053 @default.
- W2575101240 hasRelatedWork W2029212783 @default.
- W2575101240 hasRelatedWork W2031563316 @default.
- W2575101240 hasRelatedWork W2040496605 @default.
- W2575101240 hasRelatedWork W209418157 @default.
- W2575101240 hasRelatedWork W2201549145 @default.
- W2575101240 hasRelatedWork W2505699154 @default.
- W2575101240 hasRelatedWork W2552173789 @default.
- W2575101240 hasRelatedWork W2624414961 @default.
- W2575101240 hasRelatedWork W2624858198 @default.
- W2575101240 hasRelatedWork W2801098877 @default.
- W2575101240 hasRelatedWork W2858378873 @default.
- W2575101240 hasRelatedWork W2902689816 @default.
- W2575101240 hasRelatedWork W2925532316 @default.
- W2575101240 hasRelatedWork W2987399587 @default.
- W2575101240 hasRelatedWork W2988776823 @default.
- W2575101240 hasRelatedWork W3036002954 @default.
- W2575101240 hasRelatedWork W3036490591 @default.
- W2575101240 hasVolume "33" @default.
- W2575101240 isParatext "false" @default.
- W2575101240 isRetracted "false" @default.
- W2575101240 magId "2575101240" @default.
- W2575101240 workType "article" @default.