Matches in SemOpenAlex for { <https://semopenalex.org/work/W2575101493> ?p ?o ?g. }
- W2575101493 endingPage "2999" @default.
- W2575101493 startingPage "2993" @default.
- W2575101493 abstract "Two major tasks in spoken language understanding (SLU) are intent determination (ID) and slot filling (SF). Recurrent neural networks (RNNs) have been proved effective in SF, while there is no prior work using RNNs in ID. Based on the idea that the intent and semantic slots of a sentence are correlative, we propose a joint model for both tasks. Gated recurrent unit (GRU) is used to learn the representation of each time step, by which the label of each slot is predicted. Meanwhile, a max-pooling layer is employed to capture global features of a sentence for intent classification. The representations are shared by two tasks and the model is trained by a united loss function. We conduct experiments on two datasets, and the experimental results demonstrate that our model outperforms the state-of-the-art approaches on both tasks." @default.
- W2575101493 created "2017-01-26" @default.
- W2575101493 creator A5025565222 @default.
- W2575101493 creator A5035804461 @default.
- W2575101493 date "2016-07-09" @default.
- W2575101493 modified "2023-09-23" @default.
- W2575101493 title "A joint model of intent determination and slot filling for spoken language understanding" @default.
- W2575101493 cites W1550863320 @default.
- W2575101493 cites W1971034924 @default.
- W2575101493 cites W2053463056 @default.
- W2575101493 cites W2064675550 @default.
- W2575101493 cites W2076440176 @default.
- W2575101493 cites W2091671846 @default.
- W2575101493 cites W2094472029 @default.
- W2575101493 cites W2097550833 @default.
- W2575101493 cites W2106347453 @default.
- W2575101493 cites W2124895976 @default.
- W2575101493 cites W2137871902 @default.
- W2575101493 cites W2155524666 @default.
- W2575101493 cites W2159875193 @default.
- W2575101493 cites W2166293310 @default.
- W2575101493 cites W2170198242 @default.
- W2575101493 cites W2171144711 @default.
- W2575101493 cites W2171928131 @default.
- W2575101493 cites W2250539671 @default.
- W2575101493 cites W2250739653 @default.
- W2575101493 cites W2395389931 @default.
- W2575101493 cites W2399456070 @default.
- W2575101493 cites W2400801499 @default.
- W2575101493 hasPublicationYear "2016" @default.
- W2575101493 type Work @default.
- W2575101493 sameAs 2575101493 @default.
- W2575101493 citedByCount "111" @default.
- W2575101493 countsByYear W25751014932016 @default.
- W2575101493 countsByYear W25751014932017 @default.
- W2575101493 countsByYear W25751014932018 @default.
- W2575101493 countsByYear W25751014932019 @default.
- W2575101493 countsByYear W25751014932020 @default.
- W2575101493 countsByYear W25751014932021 @default.
- W2575101493 crossrefType "proceedings-article" @default.
- W2575101493 hasAuthorship W2575101493A5025565222 @default.
- W2575101493 hasAuthorship W2575101493A5035804461 @default.
- W2575101493 hasConcept C127413603 @default.
- W2575101493 hasConcept C137293760 @default.
- W2575101493 hasConcept C138885662 @default.
- W2575101493 hasConcept C147168706 @default.
- W2575101493 hasConcept C154945302 @default.
- W2575101493 hasConcept C169590947 @default.
- W2575101493 hasConcept C170154142 @default.
- W2575101493 hasConcept C17744445 @default.
- W2575101493 hasConcept C178790620 @default.
- W2575101493 hasConcept C18555067 @default.
- W2575101493 hasConcept C185592680 @default.
- W2575101493 hasConcept C199360897 @default.
- W2575101493 hasConcept C199539241 @default.
- W2575101493 hasConcept C204321447 @default.
- W2575101493 hasConcept C2776230583 @default.
- W2575101493 hasConcept C2776359362 @default.
- W2575101493 hasConcept C2776800370 @default.
- W2575101493 hasConcept C2777530160 @default.
- W2575101493 hasConcept C2779227376 @default.
- W2575101493 hasConcept C28490314 @default.
- W2575101493 hasConcept C41008148 @default.
- W2575101493 hasConcept C41895202 @default.
- W2575101493 hasConcept C50644808 @default.
- W2575101493 hasConcept C70437156 @default.
- W2575101493 hasConcept C77660490 @default.
- W2575101493 hasConcept C94625758 @default.
- W2575101493 hasConceptScore W2575101493C127413603 @default.
- W2575101493 hasConceptScore W2575101493C137293760 @default.
- W2575101493 hasConceptScore W2575101493C138885662 @default.
- W2575101493 hasConceptScore W2575101493C147168706 @default.
- W2575101493 hasConceptScore W2575101493C154945302 @default.
- W2575101493 hasConceptScore W2575101493C169590947 @default.
- W2575101493 hasConceptScore W2575101493C170154142 @default.
- W2575101493 hasConceptScore W2575101493C17744445 @default.
- W2575101493 hasConceptScore W2575101493C178790620 @default.
- W2575101493 hasConceptScore W2575101493C18555067 @default.
- W2575101493 hasConceptScore W2575101493C185592680 @default.
- W2575101493 hasConceptScore W2575101493C199360897 @default.
- W2575101493 hasConceptScore W2575101493C199539241 @default.
- W2575101493 hasConceptScore W2575101493C204321447 @default.
- W2575101493 hasConceptScore W2575101493C2776230583 @default.
- W2575101493 hasConceptScore W2575101493C2776359362 @default.
- W2575101493 hasConceptScore W2575101493C2776800370 @default.
- W2575101493 hasConceptScore W2575101493C2777530160 @default.
- W2575101493 hasConceptScore W2575101493C2779227376 @default.
- W2575101493 hasConceptScore W2575101493C28490314 @default.
- W2575101493 hasConceptScore W2575101493C41008148 @default.
- W2575101493 hasConceptScore W2575101493C41895202 @default.
- W2575101493 hasConceptScore W2575101493C50644808 @default.
- W2575101493 hasConceptScore W2575101493C70437156 @default.
- W2575101493 hasConceptScore W2575101493C77660490 @default.
- W2575101493 hasConceptScore W2575101493C94625758 @default.
- W2575101493 hasOpenAccess W2575101493 @default.
- W2575101493 hasRelatedWork W1550863320 @default.
- W2575101493 hasRelatedWork W1971034924 @default.
- W2575101493 hasRelatedWork W2024632416 @default.