Matches in SemOpenAlex for { <https://semopenalex.org/work/W2575114885> ?p ?o ?g. }
- W2575114885 endingPage "9" @default.
- W2575114885 startingPage "1" @default.
- W2575114885 abstract "With the advance of 3D technology and digital image processing technique, there have been a great number of applications of 3D models, such as virtual reality, computed aided design, and entertainment. Under such circumstance, much research attention has been spent on 3D model retrieval in recent decades. Although extensive research efforts have been dedicated to this task, it is a difficult task to explore the correlation among 3D models, which is the key issue in 3D model retrieval. In this paper, we design and implement a constructive-learning for cross-model correlation algorithm for 3D model retrieval. In this method, we first extract view features from multi-views of 3D models. To exploit the cross-model correlation, we formulate the correlation of 3D models in a hypergraph structure, where both the vertex correlation and the edge correlation are simultaneously learned in a constructive-learning process. Then, the correlation of each model to the query can be used for retrieval. To justify the performance of our proposed algorithm, we have implemented the method and tested on two datasets. We have compared it with recent state-of-the-art methods, and the results have shown superior performance of our proposed method." @default.
- W2575114885 created "2017-01-26" @default.
- W2575114885 creator A5020703546 @default.
- W2575114885 creator A5044634926 @default.
- W2575114885 creator A5044765039 @default.
- W2575114885 date "2018-01-01" @default.
- W2575114885 modified "2023-10-18" @default.
- W2575114885 title "3D model retrieval using constructive-learning for cross-model correlation" @default.
- W2575114885 cites W1572981715 @default.
- W2575114885 cites W1607073656 @default.
- W2575114885 cites W1885578172 @default.
- W2575114885 cites W1904324390 @default.
- W2575114885 cites W1966859547 @default.
- W2575114885 cites W1970493565 @default.
- W2575114885 cites W1978711012 @default.
- W2575114885 cites W1989889610 @default.
- W2575114885 cites W2003402419 @default.
- W2575114885 cites W2004030129 @default.
- W2575114885 cites W2006518954 @default.
- W2575114885 cites W2012673871 @default.
- W2575114885 cites W2019894188 @default.
- W2575114885 cites W2021122545 @default.
- W2575114885 cites W2021348965 @default.
- W2575114885 cites W2023056405 @default.
- W2575114885 cites W2024618054 @default.
- W2575114885 cites W2028248716 @default.
- W2575114885 cites W2032732073 @default.
- W2575114885 cites W2042844848 @default.
- W2575114885 cites W2046561537 @default.
- W2575114885 cites W2048997552 @default.
- W2575114885 cites W2068078373 @default.
- W2575114885 cites W2069870183 @default.
- W2575114885 cites W2072750214 @default.
- W2575114885 cites W2080067164 @default.
- W2575114885 cites W2083572085 @default.
- W2575114885 cites W2096894759 @default.
- W2575114885 cites W2099606917 @default.
- W2575114885 cites W2101025736 @default.
- W2575114885 cites W2116466193 @default.
- W2575114885 cites W2118376687 @default.
- W2575114885 cites W2126919441 @default.
- W2575114885 cites W2128700566 @default.
- W2575114885 cites W2133343739 @default.
- W2575114885 cites W2137914836 @default.
- W2575114885 cites W2138910149 @default.
- W2575114885 cites W2151245724 @default.
- W2575114885 cites W2152210972 @default.
- W2575114885 cites W2159678628 @default.
- W2575114885 cites W2162040411 @default.
- W2575114885 cites W2170057991 @default.
- W2575114885 cites W2295332248 @default.
- W2575114885 cites W2318793210 @default.
- W2575114885 cites W2410948830 @default.
- W2575114885 cites W2411544526 @default.
- W2575114885 cites W2465097962 @default.
- W2575114885 cites W2478889868 @default.
- W2575114885 cites W2482014118 @default.
- W2575114885 cites W2512032049 @default.
- W2575114885 cites W2539437527 @default.
- W2575114885 cites W343139615 @default.
- W2575114885 cites W575469000 @default.
- W2575114885 cites W857800745 @default.
- W2575114885 doi "https://doi.org/10.1016/j.neucom.2017.01.030" @default.
- W2575114885 hasPublicationYear "2018" @default.
- W2575114885 type Work @default.
- W2575114885 sameAs 2575114885 @default.
- W2575114885 citedByCount "5" @default.
- W2575114885 countsByYear W25751148852019 @default.
- W2575114885 countsByYear W25751148852020 @default.
- W2575114885 countsByYear W25751148852022 @default.
- W2575114885 countsByYear W25751148852023 @default.
- W2575114885 crossrefType "journal-article" @default.
- W2575114885 hasAuthorship W2575114885A5020703546 @default.
- W2575114885 hasAuthorship W2575114885A5044634926 @default.
- W2575114885 hasAuthorship W2575114885A5044765039 @default.
- W2575114885 hasConcept C111919701 @default.
- W2575114885 hasConcept C117220453 @default.
- W2575114885 hasConcept C118615104 @default.
- W2575114885 hasConcept C119857082 @default.
- W2575114885 hasConcept C124101348 @default.
- W2575114885 hasConcept C132525143 @default.
- W2575114885 hasConcept C149189445 @default.
- W2575114885 hasConcept C154945302 @default.
- W2575114885 hasConcept C162324750 @default.
- W2575114885 hasConcept C165696696 @default.
- W2575114885 hasConcept C187736073 @default.
- W2575114885 hasConcept C2524010 @default.
- W2575114885 hasConcept C26517878 @default.
- W2575114885 hasConcept C2778701210 @default.
- W2575114885 hasConcept C2780451532 @default.
- W2575114885 hasConcept C2781221856 @default.
- W2575114885 hasConcept C33923547 @default.
- W2575114885 hasConcept C38652104 @default.
- W2575114885 hasConcept C41008148 @default.
- W2575114885 hasConcept C49937458 @default.
- W2575114885 hasConcept C80444323 @default.
- W2575114885 hasConcept C80899671 @default.
- W2575114885 hasConcept C98045186 @default.