Matches in SemOpenAlex for { <https://semopenalex.org/work/W2575143348> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2575143348 abstract "The proliferation of social media in the recent past has provided end users a powerful platform to voice their opinions. Businesses (or similar entities) need to identify the polarity of these opinions in order to understand user orientation and thereby make smarter decisions. One such application is in the field of politics, where political entities need to understand public opinion and thus determine their campaigning strategy. Sentiment analysis on social media data has been seen by many as an effective tool to monitor user preferences and inclination. Popular text classification algorithms like Naive Bayes and SVM are Supervised Learning Algorithms which require a training data set to perform Sentiment analysis. The accuracy of these algorithms is contingent upon the quantity as well as the quality (features and contextual relevance) of the labeled training data. Since most applications suffer from lack of training data, they resort to cross domain sentiment analysis which misses out on features relevant to the target data. This, in turn, takes a toll on the overall accuracy of text classification. In this paper, we propose a two stage framework which can be used to create a training data from the mined Twitter data without compromising on features and contextual relevance. Finally, we propose a scalable machine learning model to predict the election results using our two stage framework." @default.
- W2575143348 created "2017-01-26" @default.
- W2575143348 creator A5005477413 @default.
- W2575143348 creator A5026998783 @default.
- W2575143348 creator A5039100594 @default.
- W2575143348 creator A5062159084 @default.
- W2575143348 date "2016-08-01" @default.
- W2575143348 modified "2023-10-17" @default.
- W2575143348 title "Election result prediction using Twitter sentiment analysis" @default.
- W2575143348 cites W2025478229 @default.
- W2575143348 cites W2058671303 @default.
- W2575143348 cites W2084046180 @default.
- W2575143348 cites W2126643890 @default.
- W2575143348 cites W2178294677 @default.
- W2575143348 cites W2293771150 @default.
- W2575143348 doi "https://doi.org/10.1109/inventive.2016.7823280" @default.
- W2575143348 hasPublicationYear "2016" @default.
- W2575143348 type Work @default.
- W2575143348 sameAs 2575143348 @default.
- W2575143348 citedByCount "83" @default.
- W2575143348 countsByYear W25751433482017 @default.
- W2575143348 countsByYear W25751433482018 @default.
- W2575143348 countsByYear W25751433482019 @default.
- W2575143348 countsByYear W25751433482020 @default.
- W2575143348 countsByYear W25751433482021 @default.
- W2575143348 countsByYear W25751433482022 @default.
- W2575143348 countsByYear W25751433482023 @default.
- W2575143348 crossrefType "proceedings-article" @default.
- W2575143348 hasAuthorship W2575143348A5005477413 @default.
- W2575143348 hasAuthorship W2575143348A5026998783 @default.
- W2575143348 hasAuthorship W2575143348A5039100594 @default.
- W2575143348 hasAuthorship W2575143348A5062159084 @default.
- W2575143348 hasConcept C119857082 @default.
- W2575143348 hasConcept C12267149 @default.
- W2575143348 hasConcept C124101348 @default.
- W2575143348 hasConcept C134306372 @default.
- W2575143348 hasConcept C136764020 @default.
- W2575143348 hasConcept C154945302 @default.
- W2575143348 hasConcept C158154518 @default.
- W2575143348 hasConcept C177264268 @default.
- W2575143348 hasConcept C17744445 @default.
- W2575143348 hasConcept C199360897 @default.
- W2575143348 hasConcept C199539241 @default.
- W2575143348 hasConcept C202444582 @default.
- W2575143348 hasConcept C2522767166 @default.
- W2575143348 hasConcept C33923547 @default.
- W2575143348 hasConcept C36503486 @default.
- W2575143348 hasConcept C41008148 @default.
- W2575143348 hasConcept C518677369 @default.
- W2575143348 hasConcept C52001869 @default.
- W2575143348 hasConcept C66402592 @default.
- W2575143348 hasConcept C9652623 @default.
- W2575143348 hasConceptScore W2575143348C119857082 @default.
- W2575143348 hasConceptScore W2575143348C12267149 @default.
- W2575143348 hasConceptScore W2575143348C124101348 @default.
- W2575143348 hasConceptScore W2575143348C134306372 @default.
- W2575143348 hasConceptScore W2575143348C136764020 @default.
- W2575143348 hasConceptScore W2575143348C154945302 @default.
- W2575143348 hasConceptScore W2575143348C158154518 @default.
- W2575143348 hasConceptScore W2575143348C177264268 @default.
- W2575143348 hasConceptScore W2575143348C17744445 @default.
- W2575143348 hasConceptScore W2575143348C199360897 @default.
- W2575143348 hasConceptScore W2575143348C199539241 @default.
- W2575143348 hasConceptScore W2575143348C202444582 @default.
- W2575143348 hasConceptScore W2575143348C2522767166 @default.
- W2575143348 hasConceptScore W2575143348C33923547 @default.
- W2575143348 hasConceptScore W2575143348C36503486 @default.
- W2575143348 hasConceptScore W2575143348C41008148 @default.
- W2575143348 hasConceptScore W2575143348C518677369 @default.
- W2575143348 hasConceptScore W2575143348C52001869 @default.
- W2575143348 hasConceptScore W2575143348C66402592 @default.
- W2575143348 hasConceptScore W2575143348C9652623 @default.
- W2575143348 hasLocation W25751433481 @default.
- W2575143348 hasOpenAccess W2575143348 @default.
- W2575143348 hasPrimaryLocation W25751433481 @default.
- W2575143348 hasRelatedWork W2252197266 @default.
- W2575143348 hasRelatedWork W2326619756 @default.
- W2575143348 hasRelatedWork W2901922204 @default.
- W2575143348 hasRelatedWork W2944636446 @default.
- W2575143348 hasRelatedWork W2985289539 @default.
- W2575143348 hasRelatedWork W2992507359 @default.
- W2575143348 hasRelatedWork W3014344111 @default.
- W2575143348 hasRelatedWork W3038748136 @default.
- W2575143348 hasRelatedWork W3090258244 @default.
- W2575143348 hasRelatedWork W3153487575 @default.
- W2575143348 isParatext "false" @default.
- W2575143348 isRetracted "false" @default.
- W2575143348 magId "2575143348" @default.
- W2575143348 workType "article" @default.