Matches in SemOpenAlex for { <https://semopenalex.org/work/W2575448204> ?p ?o ?g. }
- W2575448204 endingPage "2370" @default.
- W2575448204 startingPage "2364" @default.
- W2575448204 abstract "In dictionary learning for analysis of images, spatial correlation from extracted patches can be leveraged to improve characterization power. We propose a Bayesian framework for dictionary learning, with spatial location dependencies captured by imposing a multiplicative Gaussian process (GP) priors on the latent units representing binary activations. Data augmentation and Kronecker methods allow for efficient Markov chain Monte Carlo sampling. We further extend the model with Sigmoid Belief Networks (SBNs), linking the GPs to the top-layer latent binary units of the SBN, capturing inter-dictionary dependencies while also yielding computational savings. Applications to image denoising, inpainting and depth-information restoration demonstrate that the proposed model outperforms other leading Bayesian dictionary learning approaches." @default.
- W2575448204 created "2017-01-26" @default.
- W2575448204 creator A5003075563 @default.
- W2575448204 creator A5016448581 @default.
- W2575448204 creator A5056639842 @default.
- W2575448204 creator A5081872106 @default.
- W2575448204 date "2016-07-09" @default.
- W2575448204 modified "2023-09-24" @default.
- W2575448204 title "Bayesian dictionary learning with Gaussian processes and sigmoid belief networks" @default.
- W2575448204 cites W137285897 @default.
- W2575448204 cites W1567512734 @default.
- W2575448204 cites W1654787807 @default.
- W2575448204 cites W1917966882 @default.
- W2575448204 cites W1976496742 @default.
- W2575448204 cites W1977581467 @default.
- W2575448204 cites W1988698355 @default.
- W2575448204 cites W2005876975 @default.
- W2575448204 cites W2027822767 @default.
- W2575448204 cites W2031299022 @default.
- W2575448204 cites W2054799446 @default.
- W2575448204 cites W2056898157 @default.
- W2575448204 cites W2086962710 @default.
- W2575448204 cites W2088254198 @default.
- W2575448204 cites W2098841537 @default.
- W2575448204 cites W2099878672 @default.
- W2575448204 cites W2104974755 @default.
- W2575448204 cites W2128002512 @default.
- W2575448204 cites W2140433132 @default.
- W2575448204 cites W2159203540 @default.
- W2575448204 cites W2160547390 @default.
- W2575448204 cites W2161133254 @default.
- W2575448204 cites W2170678468 @default.
- W2575448204 cites W2172172255 @default.
- W2575448204 cites W2188412456 @default.
- W2575448204 cites W2263034332 @default.
- W2575448204 cites W2595142274 @default.
- W2575448204 cites W266389306 @default.
- W2575448204 cites W2952677397 @default.
- W2575448204 cites W2963711523 @default.
- W2575448204 hasPublicationYear "2016" @default.
- W2575448204 type Work @default.
- W2575448204 sameAs 2575448204 @default.
- W2575448204 citedByCount "2" @default.
- W2575448204 countsByYear W25754482042016 @default.
- W2575448204 crossrefType "proceedings-article" @default.
- W2575448204 hasAuthorship W2575448204A5003075563 @default.
- W2575448204 hasAuthorship W2575448204A5016448581 @default.
- W2575448204 hasAuthorship W2575448204A5056639842 @default.
- W2575448204 hasAuthorship W2575448204A5081872106 @default.
- W2575448204 hasConcept C107673813 @default.
- W2575448204 hasConcept C111350023 @default.
- W2575448204 hasConcept C115961682 @default.
- W2575448204 hasConcept C11727466 @default.
- W2575448204 hasConcept C119857082 @default.
- W2575448204 hasConcept C121332964 @default.
- W2575448204 hasConcept C153180895 @default.
- W2575448204 hasConcept C154945302 @default.
- W2575448204 hasConcept C163716315 @default.
- W2575448204 hasConcept C177769412 @default.
- W2575448204 hasConcept C41008148 @default.
- W2575448204 hasConcept C61326573 @default.
- W2575448204 hasConcept C62520636 @default.
- W2575448204 hasConceptScore W2575448204C107673813 @default.
- W2575448204 hasConceptScore W2575448204C111350023 @default.
- W2575448204 hasConceptScore W2575448204C115961682 @default.
- W2575448204 hasConceptScore W2575448204C11727466 @default.
- W2575448204 hasConceptScore W2575448204C119857082 @default.
- W2575448204 hasConceptScore W2575448204C121332964 @default.
- W2575448204 hasConceptScore W2575448204C153180895 @default.
- W2575448204 hasConceptScore W2575448204C154945302 @default.
- W2575448204 hasConceptScore W2575448204C163716315 @default.
- W2575448204 hasConceptScore W2575448204C177769412 @default.
- W2575448204 hasConceptScore W2575448204C41008148 @default.
- W2575448204 hasConceptScore W2575448204C61326573 @default.
- W2575448204 hasConceptScore W2575448204C62520636 @default.
- W2575448204 hasLocation W25754482041 @default.
- W2575448204 hasOpenAccess W2575448204 @default.
- W2575448204 hasPrimaryLocation W25754482041 @default.
- W2575448204 hasRelatedWork W1651135072 @default.
- W2575448204 hasRelatedWork W1724038983 @default.
- W2575448204 hasRelatedWork W1971554179 @default.
- W2575448204 hasRelatedWork W2096989558 @default.
- W2575448204 hasRelatedWork W2103013841 @default.
- W2575448204 hasRelatedWork W2114466964 @default.
- W2575448204 hasRelatedWork W2120534875 @default.
- W2575448204 hasRelatedWork W2126986674 @default.
- W2575448204 hasRelatedWork W2148522164 @default.
- W2575448204 hasRelatedWork W2198121974 @default.
- W2575448204 hasRelatedWork W2469594746 @default.
- W2575448204 hasRelatedWork W2542200577 @default.
- W2575448204 hasRelatedWork W2551874332 @default.
- W2575448204 hasRelatedWork W2600169137 @default.
- W2575448204 hasRelatedWork W2890850650 @default.
- W2575448204 hasRelatedWork W2904684641 @default.
- W2575448204 hasRelatedWork W2951244767 @default.
- W2575448204 hasRelatedWork W2964186239 @default.
- W2575448204 hasRelatedWork W3035162526 @default.
- W2575448204 hasRelatedWork W2355171993 @default.